
SILIGURI INSTITUTE OF TECHNOLOGY

LABPRATORY MANUAL

PROGRAMMING WITH PYTHON

SILIGURI INSTITUTE OF TECHNOLOGY

VISON

Siliguri Institute of Technology is To be a recognized institution offering high quality

education, opportunities to students to become globally employable

Engineers/Professionals in best ranked industries and research organization.

To impart quality technical education for holistic development of students who will full fil

the needs of the industry/society and be actively engaged in making a successful career in

industry/research/higher education in India & abroad

PROGRAM EDUCATIONAL OBJECTIVES (PEO) :

The graduates will be:

• Competent professionals with knowledge of Computer Science & Engineering to

pursue variety of careers/higher education.

• Proficient in successfully designing innovative solutions to real life problems that

are technically sound, economically viable and socially acceptable.

• Efficient team leaders, effective communicators and capable of working in multi-

disciplinary environment following ethical values.

• Capable of adapting to new technologies and constantly upgrade their skills with an

attitude towards lifelong learning.

PROGRAM OUTCOMES (PO)

Engineering Graduates will be able to:

• Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex

engineering problems.

VISON

MISSION

• Problem analysis: Identify, formulate, review research literature, and analyze

complexengineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

• Design/development of solutions: Design solutions for complex engineering

problems anddesign system components or processes that meet the specified needs

with appropriate consideration for the public health and safety, and the cultural,

societal, and environmental considerations.

• Conduct investigations of complex problems: Use research-based knowledge and

researchmethods including design of experiments, analysis and interpretation of

data, and synthesis of the information to provide valid conclusions.

• Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modernengineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

• The engineer and society: Apply reasoning informed by the contextual knowledge to

assesssocietal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

• Environment and sustainability: Understand the impact of the professional

engineering solutionsin societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

• Ethics: Apply ethical principles and commit to professional ethics and

responsibilities and norms ofthe engineering practice.

• Individual and team work: Function effectively as an individual, and as a member or

leader indiverse teams, and in multidisciplinary settings.

• Communication: Communicate effectively on complex engineering activities with

the engineeringcommunity and with society at large, such as, being able to

comprehend and write effective reports and design documentation, make effective

presentations, and give and receive clear instructions.

• Project management and finance: Demonstrate knowledge and understanding of

theengineering and management principles and apply these to one's own work, as a

member and leader in a team, to manage projects and in multidisciplinary

environments.

• Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadestcontext of technological

change.

Programming with Python :

CO1:Student will able to install, set pat variable of Python 2.7

versions and write, test, and debug simple Python programs.

CO2:To implement Python programs with conditionals and loops.

CO3:Use functions for structuring Python programs.

CO4:Represent compound data using Python lists, tuples,

dictionaries.

CO5: Importing module ,Read and write data from/to files in Python.

LABORATORY

Maulana Abul Kalam Azad University of Technology,
(Formerly West Bengal University of Technology) West Bengal

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

Subject Code : PCC-CS 393

Category: Professional Core course

Subject Name : IT Workshop (Sci Lab/MATLAB/Python/R)

Semester : Third L-T-P : 1-0-3 Credit:3
Pre-Requisites: No-prerequisite

Programming with Python

Introduction :

History, Features ,Setting up path, Working with Python, Basic Syntax, Variable and Data

Type, Operator

Conditional Operator :

If , if-else, Nested if-else, looping : For, While, Nested loops

Control Statements:

Break, Continue, pass

String Manipulation:

 Accessing String Basic Operations, String slices, Function and Methods.

Course Objective

List :

Introduction, Accessing list, Operations, Working with lists, Function and Methods.

Tuple :

Introduction, Accessing tuples, Operations, Working, Functions and Methods.

Dictionary:

Introduction, Accessing values in dictionaries, Working with dictionaries, Properties

Function :

Defining a function, Calling a function, Types of functions, Function Arguments,

Anonymous functions, Global and local variables.

Module :

Importing module, Math module, Random module, Packages, Composition, Input-Output

Printing on screen, Reading data from keyboard, Opening and closing file, Reading and

writing files, Functions.

Exception Handling:

Exception, Exception Handling, Except clause, Try ? finally clause, User Defined

Exceptions.

Experim

ent NO.
Topic

Title

1 BASIC

A).Install Python and Set Path variable

B). Running instructions in Interactive interpreter and a Python Script

C). Write a program to purposefully raise Indentation Error and Correct it. [Display your

name and Department in two separate line]

2 Operator

A). Write a program to compute distance between two points taking input from the user

(Pythagorean Theorem)

B). Write a program add.py that takes 2 numbers as command line arguments and prints its

sum.

3
Conditional

Statement

A) Write a program to check a given number is even or odd.

B) Write a program to check a given year is leap year or not.

C) Write a program to calculate real roots of a quadratic equation.

4 Loop Statement

A) Write a program using a while loop that asks the user for a number, and prints a

countdown from that number to zero. [using range() method]

B) Write a program to calculate the Sum of even Fibonacci numbers below 4 Thousand.

C) Write a program to calculate GCD of two number.

D) Write a program to print the following pattern :

 i) ii) iii)

 *

 * *

 * * *

 *

 * * *

* * * * *

* * *

 * *

 *

5 String Operation

A) Write a program to count no of vowel in a string(using in operator)

B) Write a program to perform following operation on strong:

 i) The total number of characters in the string

 ii) The last three characters of the string

 iii) Print The string backwards direction

 iv) Print The string in all caps

6 Tuple and Set

A)Write a program to initialize and Display tuple data structure.

B) Write a program to initialize and Display two Set data structure and do the following

operation :

 i) union ii)intersection ii)difference

7 List

A) Print the total number of items in the list

B) Print the list in reverse order.

C) Remove the first and last items from the list, sort the remaining items, and print the result.

D) Write a program that generates a list of 20 random numbers between 1 and 100.

(a) Print the list.

(b) Print the average of the elements in the list.

(c) Print the largest and smallest values in the list.

(d) Print the second largest and second smallest entries in the list

(e) Print how many even numbers are in the list.

E) Write a program that takes any two lists L and M of the same size and adds their elements

together to form a new list N whose elements are sums of the corresponding elements in L and

M. For instance, if L=[3,1,4] and M=[1,5,9], then N should equal [4,6,13].

F)Write a program to perform multiplication of two square matrices

8 Function

A) Write a function called rectangle that takes two integers m and n as arguments and prints

out an m n box consisting of asterisks. Shown below is the output of rectangle(2,4).

B) Write a function called sum_digits() that is given an integer num and returns the sum of the

digits of num.

c)The digital root of a number n is obtained as follows: Add up the digits n to get a new

number. Add up the digits of that to get another new number. Keep doing this until you get a

number that has only one digit. That number is the digital root.

For example, if n = 45893, we add up the digits to get 4 + 5 + 8 + 9 + 3 = 29. We then

add up the digits of 29 to get 2 + 9 = 11. We then add up the digits of 11 to get 1 + 1 =

2. Since 2 has only one digit, 2 is our digital root.

Write a function that returns the digital root of an integer n. [Note: there is a shortcut, where

the digital root is equal to n mod 9, but do not use that here.]

C)Write a program to multiply two list using lambda function

D) Write a program to filter out only odd number from a list.

9 Dictionary

A)Write a Python script to store(ascending and descending order) in to a dictionary by value.

B)Write a Python script to insert a new key in to a dictionary.

C)Write a program to take a list of student’s (name, age, marks) input from key board. Print

average marks and details of highest scorer using dictionary data structure.

10 File

A)Write a program to copy the content of one file in to another file.

B)Write a program to count the frequency of each word from a file.

11 Module

A)Write a program to display i)Current date and time ii)Current year iii)Month of year

iv)Week number of year v)Week day of the week vi)Day of year vii)Day of week

B)Plot the the roll number and average marks of a list of student in a class(import mathplotlib

module)

12
Exception

Handling

A)Write a program to tame two number as a input and divide theme and show i) value error

ii)zero division error

Experiment 1:

 Procedure to Install and Run programs in Python:

In order to install python, Visit https://www.python.org. When we visit the Python for Windows

download page, we will immediately see the division. Right at the top, square and center, the repository

asks if you want the latest release of Python 2 or Python 3 (2.7.13 and 3.6.1, respectively) as shown in

below Figure.

The version we want depends on our end goal. Here we will install Python 2.7.13. Click on Download

Python 2.7.13 then python-2.7.13.msi file will be downloaded. Run the installer, then a window will be

opened as shown below. Select “Install for all users,” and then click “Next”.

After Clicking on “Next”, a window will be opened as shown below. On the directory selection screen,

leave the directory as “Python27” and click “Next”.

After Clicking on “Next”, a window will be opened as shown below. On the customization screen, scroll

down, click “Add python.exe to Path,” and then select “Will be installed on local hard drive.” then click

“Next.”

We don‟t have to make any more decisions after this point. Just click through the wizard to complete the

installation. When the installation is finished, set the variable path. After setting up the path, we can

confirm the installation by opening up Command Prompt and type the following command as shown

below.

Now, we can say that Python 2.7.13 is installed on our machine.

Different Ways of Invoking Python:

 Python GUI

 Python command line

 Command prompt from windows

Python GUI:

Click on start -> all programs -> python 2.7 -> IDLE(Python GUI).

After Clicking on IDLE(Python GUI), a window will be opened as shown below. Python command

line: Click on

Python command line:

 Click on start -> all programs -> python 2.7 -> Python (Command line).

After Clicking on Python (command line), a window will be opened as shown below:

Command prompt from windows:

To open Python from Windows command prompt, We need to set path. The procedure to set the

path is as follows :

Go to My Computer -> right click and open properties, then a window will be opened as shown

below:

Now, Click on Advanced system settings -> Environmental Variables -> system variables and

under system variable, click on Path variable and click on Edit. Then, a window will be opened as

follows:

Add python path in variable value and click on OK as follows:

Now Open Command prompt from windows (cmd), and type the command “python” as follows:

Experiment : 1(C)

Write a program to purposefully raise Indentation Error and Correct it.

Description:

Most of the programming languages like C, C++, Java use braces { } to define a block of code.

Python uses indentation.

A code block (body of a function, loop etc.) starts with indentation and ends with the first

unintended line. The amount of indentation is depends on our choice, but it must be consistent

throughout that block. Generally, Four whitespaces are used for indentation and is preferred over

tabs. The enforcement of indentation in Python makes the code look neat and clean. This results

into Python programs that look similar and consistent. Incorrect indentation will result into

Indentation Error.

Program that shows Indentation Error:

a = 10

b = 5

 c = a + b

 print c

Output:

Program without Indentation Error:

a = 10

b = 5

c = a + b

print c

Experiment 2(A) :

Write a program to compute distance between two points taking input from the user (Pythagorean

Theorem).

Description: The Pythagorean theorem is the basis for computing distance between two points. Let (x1,y1)

and (x2,y2) be the co-ordinates of points on xy-plane. From Pythagorean theorem, the distance between

two points is calculated using the formulae:

 Distance D= ���� � ���2 � �	� � 	��2

Distance between two point A(x1,y1) and B(x2,y2)

import math as m

print(" Enter the Co ordinate of first point")

x1=int(input())

y1=int(input())

print("Enter the co ordinate of second point")

x2,y2=[int (x) for x in input("Enter x and y seperated by space").split()]

print(x2,y2)

d=m.sqrt((x2-x1)*(x2-x1) + (y2-y1)**2)

print(m.ceil(d))

print(m.floor(d))

2_B) Program for Arithmatic operation like addition ,multiplication ,division

'''

x=int(input("Enter first number"))

y=int(input("enter second number"))

print(" Addition result=",x-y)

print(" Multiplication result=",x*y)

print(" Division result=",x/y)

print(" modular result=",x%y)

print(" integer division result=",x//y)

'''

#3_A) Check given number is even or odd...

'''

x=int(input("Enter The number"))

if (x%2==0):

 print("The Number",x, "is Even")

else:

 print("The Number",x,"is Odd")

'''

#3_B) Check given yuear is leap year or not...

'''

x=int(input("Enter The Year"))

if(x%400==0 or x%100!=0 and x%4==0):

 print("The year",x,"is leap year")

else:

 print("The Year",x,"Is not leap year")

'''

#3_C Check a given charactor is alphabet ,digit or specal char or not

ch=input("enter any symbol from keybord")

print("Ascii value of the Symbol is",ord(ch))

if((ch>='A' and ch<='Z') or (ch>='a' and ch<='z')):

 print("The Symbol",ch,"is alphabet")

elif(ch>='0' and ch<='9'):

 print("The symbol",ch,"is Digit")

else:

 print("The symbol",ch,"Is Special charactor")

4_A print serasse of number and count down of this number .

'''

x=int(input("Enter a number "))

y=x

while(x>0):

 print(x)

 x=x-1

countdown using range method

for i in range(y,0,-1):

 print(i)

4_B Sum of even fibo nacci number below 4000

a=-1

b=1

s=0

c=a+b

while(c<=4000):

 a=b

 b=c

 c=a+b

 if(c%2==0):

 print(c)

 s=s+c

print("Sum of all even fibo nacci bello 4000 is =",s)

4_c GCD of two number

x=int(input("Enter First number"))

y=int(input("enter second number"))

m=x

n=y

while(x!=y):

 if(x>y):

 x=x-y

 else:

 y=y-x

print(" Gcd of ",m, "and",n,"is=",x)

4d_patt_i Print pattaen :

x=int(input("Enter no of row"))

for i in range(0,x+1):

 for j in range(0,i+1,1):

 if(i>j):

 print("*",end='')

 else:

 print()

4d_patt_ii Print pattaen :

x=int(input("Enter no of row"))

for i in range(0,x):

 for k in range(0,x-i+1):

 print(" ",end="")

 for j in range(0,i+1):

 print(" * ",end='')

 print()

4d_patt_iii Print pattaen :

x=int(input("Enter no of row"))

for i in range(0,x):

 for k in range(0,i+1):

 print(" ",end="")

 for j in range(0,x-i):

 print("*",end='')

 print()

'''

5 A write a program to count no of vowel in a srting ...

'''

s=input("Enter a string")

s=s.lower()

c=0

for item in s:

 if item in ('a','e','i','o','u'):

 c=c+1

print(" Total vowel = ",c)

'''

5_B write a program to perform the following operation in a srting ...

s=input("Enter a string")

print(" Total no of charactor is=",len(s))

print(" last 3 charactor is=",s[-3:])

print(" Reverse String is = ",s[-1::-1])

print(" All capital of string= ",s.upper())

'''

6_A_Initialize and display tuple and set

t=(1,2,"Kritt",'a',1,'d',23.7)

in set all element are unique do not contain duplicate element(automatic delete)

s={ "kritt",3,5,9,23.0,3}

print(t)

print(s)

'''

6_B_Initialize and display two set and do the following operation

initialize empty set

s1=set()

s2=set()

while (1):

 item=input("Enter set item for set 1: ")

 s1.add(item)

 print(" Press 1 for continue and For quit press 0 ")

 ch=int(input())

 if ch==0:

 break

 else:

 continue

print(" item of first set = :",s1)

while (1):

 item=input("Enter set item for set 2: ")

 s2.add(item)

 print("Press 1 for continue and For quit press 0")

 ch=int(input())

 if ch==0:

 break

 else:

 continue

print("Total item of First SET = ",s1,"Total item of Second set = :",s2)

print("Union of SET 1 and SET 2 is=: ",s1.union(s2))

#print(s1|s2)

print("Intersection of SET 1 and SET 2 is =: ",s1.intersection(s2))

#print(s1&s2)

print("Difference of SET 1 and SET 2 is =: ",s1.difference(s2))

#print(s1-s2)

list Operation

initialize a list

'''

L=[1,2,8,4,3]

#insert a item in to list

item=int(input(" Enter item for insert .."))

L.append(item)

print(L)

#count no of item in the list

c=len(L)

print("Total no of element is =",c)

print(" Print in reverse order",L[-1::-1])

L.remove(L[0])

print(L)

L.pop()

print("After remove last element",L)

#print decending order

L.sort(reverse=True)

print(" Sotred order",L)

Program 7_D generate 20 random number between 1 to 100

import random

L=[]

for i in range(5):

 x=random.randint(1,100)

 L.append(x)

print(L)

m=max(L)

n=min(L)

s=sum(L)

a=s/len(L)

print(" max=",m,"min=",n,"sum=",s,"Average=",a)

L.sort()

print(L)

print("Second Highest =",L[-2])

print("Second lowest=",L[1])

c=[i for i in L if i%2==0]

print("No of Even =",len(c))

#Program 7_E Take two list and add them store in to third list

import random

L=[]

M=[]

for i in range(5):

 x=random.randint(1,100)

 L.append(x)

print(L)

for i in range(5):

 x=random.randint(1,100)

 M.append(x)

print(M)

N=[0 for i in range(5)]

for j in range(5) :

 N[j]=L[j]+M[j]

print("Addition od Two list =",N)

'''

multiply two matrox...

M=[[1,2,3],[1,1,2],[2,2,1]]

N=[[1,2,1],[1,1,2],[1,2,1]]

R=[]

for i in range(3):

 l=[]

 for j in range(3):

 l.append(0)

 R.append(l)

print(M,N,R)

for i in range(3):

 for j in range(3):

 for k in range(3):

 R[i][j]=R[i][j]+M[i][k]*N[k][j]

print(" Matrix Result ")

for i in R:

 print(i)

'''

8_A program print rectangle with * using function..

def rect(r,c):

 for i in range(r):

 for j in range(c):

 print("*",end='')

 print()

print("Enter no of row")

r=int(input())

print("Enter no of collumn")

c=int(input())

rect(r,c)

8_B program print some of digit using function..

def sum_dig(n):

 s=0

 while(n>0):

 r=n%10

 s=s+r

 n=n//10

 return(s)

print(" Enter the number ")

n=int(input())

print("SUM of digit if a number",n," is =",sum_dig(n))

8_C program finding digital root using function.

def sum_dig(n):

 s=0

 while(n>0):

 r=n%10

 s=s+r

 n=n//10

 return(s)

print(" Enter the number ")

n=int(input())

sod=sum_dig(n)

while(sod>9):

 sod=sum_dig(sod)

 print(sod)

print(" Digital root is =",sod)

'''

8_D program add two list using lambda function (both list must be in same in size.

L1=[1,3,2,5]

L2=[3,5,1,2]

res=map(lambda x,y:x*y,L1,L2)

print(list(res))

lambda with filter function

L=[2,1,4,5,8,9,23.10,3]

res1=list(filter(lambda x :(x%2==1),L))

print("Odd number in list ")

print(res1)

1

SILIGURI INSTITUTE OF TECHNOLOGY

COMPUTER SCIENCE
AND

ENGINEERING DEPARTMENT

OPERATING SYSTEM

LABORATORY MANUAL

LM Rev No: 01

2

Contents
Chapter 1 - Shell Programming ... 3

1. Shell Programming .. 3

What is a Shell? .. 3

Pipes and Redirection ... 4

The Shell as a Programming Language ... 4

Shell Syntax ... 6

Putting It All Together ... 21

Chapter 2 - Processes and Signals .. 24

Processes and Signals .. 24

What is a Process? ... 24

Process Structure ... 24

Starting New Processes .. 28

Signals .. 39

Chapter 3- Inter-process Communication .. 52

Inter-process Communication: Pipes ... 52

What is a Pipe? .. 52

Process Pipes ... 53

Parent and Child Processes ... 61

Named Pipes: FIFOs ... 66

Chapter 4 - Semaphores .. 76

Semaphores .. 76

Semaphores .. 76

References: .. 83

3

Chapter 1 - Shell Programming

1. Shell Programming

The shell has similarities to the DOS command processor Command.com (actually Dos was design as a
poor copy of UNIX shell), it's actually much more powerful, really a programming language in its own
right.

A shell is always available on even the most basic UNIX installation. You have to go through the shell to
get other programs to run. You can write programs using the shell. You use the shell to administrate your
UNIX system. For example:

ls -al | more
is a short shell program to get a long listing of the present directory and route the output through the
more command.

What is a Shell?

A shell is a program that acts as the interface between you and the UNIX system, allowing you to enter
commands for the operating system to execute.

Here are some common shells.

4

Pipes and Redirection

Pipes connect processes together. The input and output of UNIX programs can be redirected.

Redirecting Output

The > operator is used to redirect output of a program. For example:

ls -l > lsoutput.txt
redirects the output of the list command from the screen to the file lsoutput.txt.

To append to a file, use the >> operator.

ps >> lsoutput.txt

Redirecting Input

You redirect input by using the < operator. For example:

more < killout.txt

Pipes

We can connect processes together using the pipe operator (|). For example, the following program
means run the ps program, sort its output, and save it in the file pssort.out

ps | sort > pssort.out
The sort command will sort the list of words in a textfile into alphbetical order according to the ASCII
code set character order.

The Shell as a Programming Language

You can type in a sequence of commands and allow the shell to execute them interactively, or youu can
sotre these commands in a file which you can invoke as a program.

Interactive Programs

A quick way of trying out small code fragments is to just type in the shell script on the command line.
Here is a shell program to compile only files that contain the string POSIX.

5

Creating a Script

To create a shell script first use a text editor to create a file containing the commands. For example, type
the following commands and save them as first.sh

Note: commands start with a #.

The line

#!/bin/sh
is special and tells the system to use the /bin/sh program to execute this program.

The command

exit 0
Causes the script program to exit and return a value of 0, which means there were not errors.

Making a Script Executable

There are two ways to execute the script. 1) invoke the shell with the name of the script file as a
parameter, thus:

/bin/sh first.sh

Or 2) change the mode of the script to executable and then after execute it by just typing its name.
chmod +x first.sh
first.sh

Actually, you may need to type:
./first.sh

6

to make the file execute unles the path variable has your directory in it.

Shell Syntax

The modern UNIX shell can be used to write quite large, structured programs.

Variables

Variables are generally created when you first use them. By default, all variables are considered and
stored as strings. Variable names are case sensitive.

Quoting

Normally, parameters are separated by white space, such as a space. Single quot marks can be used to
enclose values containing space(s). Type the following into a file called quot.sh

make sure to make it executable by typing the command:

< chmod a+x quot.sh
The results of executing the file is:

How It Works

7

The variable myvar is created and assigned the string Hi there. The content of the variable is displyed
using the echo $. Double quotes don't effect echoing the value. Single quotes and backslash do.

Environment Variables

When a shell starts, some variables are initialized from values in the environment. Here is a sample of
some of them.

Parameter Variables

If your script is invoked with parameters, some additional variables are created.

The following shows the difference between using the variable $* and $@

notice that the first line of the above has a space between the firsr ' and the second '.

8

Now try your hand at typing a shell script

Carefully type the following into a file called: try_variables

make sure to make it executable by typing the command:

< chmod a+x try_variables
Execute the file with parameters by typing:

try_variables foo bar baz

The results of executing the file is:

How It Works

It creates the variable salutation, displays its value, and some parameter variables.

Conditions

All programming languages have the ability to test conditions and perform different actions based on
those conditions. A shell script can test the exit code of any command.

The test, or [] Command

Here is how to check for the existance of the file fred.c using the test and using the [] command.

9

You can even place the then on the same line as the if, if youu add a semicolon before the word then.

Here are the conditon types that can be used with the test command. There are string comparison.

There are arithmetic comparison.

There are file conditions.

10

Control Structures

The shell has a set of control structures.

if

The if statement is vary similar other programming languages except it ends with a fi.

if condition
then

statements
else

statements
fi

elif

the elif is better known as "else if". It replaces the else part of an if statement with another if statement.
You can try it out by using the following script.

#!/bin/sh

echo "Is it morning? Please answer yes or no"
read timeofday

if [$timeofday = "yes"]
then

echo "Good morning"
elif [$timeofday = "no"]; then

echo "Good afternoon"
else

echo "Sorry, $timeofday not recognized. Enter yes or no"
exit 1

fi
exit 0

How It Works

11

The above does a second test on the variable timeofday if it isn't equal to yes.

A Problem with Variables

If a variable is set to null, the statement

if [$timeofday = "yes"]
looks like

if [= "yes"]
which is illegal. This problem can be fixed by using double quotes around the variable name.

if ["$timeofday" = "yes"].

for

The for construct is used for looping through a range of values, which can be any set of strings. The syntax
is:

for variable in values
do

statements
done

Try out the following script:
#!/bin/sh

for foo in bar fud 43
do

echo $foo
done
exit 0

When executed, the output should be:
bar
fud
43

How It Works

The above example creates the variable foo and assigns it a different value each time around the for loop.

How It Works

Here is another script which uses the $(command) syntax to expand a list to chap3.txt, chap4.txt, and
chap5.txt and print the files.

#!/bin/sh

for file in $(ls chap[345].txt); do

lpr $file

12

done

while

While loops will loop as long as some condition exist. OF course something in the body statements of the
loop should eventually change the condition and cause the loop to exit. Here is the while loop syntax.

while condition do
statements

done

Here is a whil loop that loops 20 times.
#!/bin/sh

foo=1
while ["$foo" -le 20]
do

echo "Here we go again"
foo=$(($foo+1))

done
exit 0

How It Works

The above script uses the [] command to test foo for <= the value 20. The line

foo=$(($foo+1))
increments the value of foo each time the loop executes..

until

The until statement loops until a condition becomes true! Its syntax is:

until condition
do

statements
done

Here is a script using until.
#!/bin/sh

until who | grep "$1" > /dev/null
do

sleep 60
done

now ring the bell and announce the expected user.

echo -e \\a

13

echo "**** $1 has just loogged in ****"

exit 0

case

The case statement allows the testing of a variable for more then one value. The case statement ends with
the word esac. Its syntax is:

case variable in
pattern [| pattern] ...) statements;;
pattern [| pattern] ...) statements;;
...

esac

Here is a sample script using a case statement:
#!/bin/sh

echo "Is it morning? Please answer yes or no"
read timeofday

case "$timeofday" in

"yes") echo "Good Morning";;
"no") echo "Good Afternoon";;
"y") echo "Good Morning";;
"n") echo "Good Afternoon";;
*) echo "Soory, answer not recognized";;

esac
exit 0

How It Works

The value in the varaible timeofday is compared to various strings. When a match is made, the associated
echo command is executed.

Here is a case where multiple strings are tested at a time, to do the some action.

case "$timeofday" in
"yes" | "y" | "yes" | "YES") echo "good Morning";;
"n"* | "N"*) < echo "Good Afternoon";;
*) < echo "Sorry, answer not recognized";;

esac

How It Works

The above has sever strings tested for each possible statement.

Here is a case statement that executes multiple statements for each case.

14

case "$timeofday" in
"yes" | "y" | "Yes" | "YES")

echo "Good Morning"
echo "Up bright and early this morning"
;;

[nN]*)
echo "Good Afternoon"
;;

*)
echo "Sorry, answer not recognized"
echo "Please answer yes or noo"
exit 1
;;

esac

How It Works

When a match is found to the variable value of timeofday, all the statements up to the ;; are executed.

Lists

To test for multiple conditions, we can use nested if or if/elif.

The AND List

Alolows us to execute a series of command. Each command is only execute if the previous commands
have succeeded. An AND list joins conditions by using &&.

statement1 && statement2 && statement3 && ...

Her is a sample AND list:
#!/bin/sh

touch fine_one
rm -f file_two

if [-f file_one] && echo "hello" && [-f file_two] && echo " there"
then

echo "in if"
else

echo "in else"
fi
exit 0

How It Works

The touch command creates an empty file. the rm come remove a file. So, before we start, file_one exists
and file_two doesn't. The AND list finds the file_one, and echos the word hello, but it doesn't find the file
file_two. Therefore the overall if fails and the else clause is executed.

15

The OR List

The OR list construct allows us to execute a series of commands until one succeeds!

statement1 || statement2 || statement3 || ...
Here is a sample Or list

rm -f file_one

if [-f file_one] || echo "hello" || echo " there"
then

echo "in if"
else

echo "in else"
fi
exit 0

How It Works

The above script removes the file file_one, then test for and fails to find the file_one, but does successfully
echo hello. It then executes the then statement echoing in if.

Statement Blocks

Multiple statements can be placed inside of { } to make a statement block.

Functions

You can define functions inthe shell. The syntax is:

function_name () {
statements

}
Here is a sample function and its execution.

#!/bin/sh

foo() {

echo "Function foo is executing"
}

echo "script starting"
foo
echo "script ended"

exit 0

How It Works

When the above script runs, it defines the funcion foo, then script echos script starting, then it runs the
functions foo which echos Function foo is executing, then it echo script ended.

16

Here is another sample script with a function in it. Save it as my_name

#!/bin/sh

yes_or_no() {

echo "Parameters are $*"
while true
do

echo -n "Enter yes or no"
read x
case "$x" in

y | yes) return 0;;
n | no) return 1;;
*) echo "Answer yes or no"

esac
done

}

echo "Original parameters are $*"

if yes_or_no "IS your naem $1"
then

echo "Hi $1"
else

echo "Never mind"
fi
exit 0

How It Works

When my_name is execute with the statement:

my_name Rick and Neil
. gives the output of:

Original parameters are Rick and Neil
Parameters are Is your name Rick
Enter yes or no
no
Never mind

Commands

You can execute normal command and built-in commands from a shell script. Built-in commands are
defined and only run inside of the script.

break

17

It is used to escape from an enclosing for, while or until loop before the controlling condition has been
met.

The : Command

The colon command is a null command. It can be used for an alias for true..

continue

The continue command makes the enclosing for, while, or until loop continue at the next iteration.

The . Command

The dot command executes the command in the current shell:

. shell_script
.

echo

The echo command simply outputs a string to the standard output device followed by a newline
character.

eval

The eval command evaluates arguments and give s the results.

exec

The exec command can replace the current shell with a different program. It can also modify the current
file descriptors.

exit n

The exit command causes the script to exit with exit code n. An exit code of 0 means success. Here are
some other codes.

export

The export command makes the variable named as its parameter available in subshells.

expr

The expr command evaluates its arguments as an expression.

18

x = `expr $x + 1`

Here are some of its expression evaluations

printf

The printf command is only available in more recent shells. It works similar to the echo command. Its
general form is:

printf "format string" parameter1 parameter2 ...
Here are some characters and format specifiers.

return

The return command causes functions to return. It can have a value parameter which it returns.

set

19

The set command sets the parameter variables for the shell.

shift

The shift command moves all the parameters variables down by one, so $2 becomes $1, $3 becomes $2,
and so on.

trap

The trap command is used for secifying the actions to take on receipt of signals. It syntax is:

trap command signal
Here are some of the signals.

How It Works

The try it out section has you type in a shell script to test the trap command. It creates a file and keeps
saying that it exists until youu cause a control-C interrupt. It does it all again.

unset

The unset command removes variables or functions from the environment.

Command Execution

The result of $(command) is simply the output string from the command, which is then available to the
script.

Arithmetic Expansion

The $((...)) is a better alternative to the expr command, which allows simple arithmetic commands to be
processed.

x=$(($x+1))

Parameter Expansion

Using { } around a variable to protect it against expansion.

20

#!/bin/sh

for i in 1 2
do

my_secret_process ${i}_tmp
done

Here are some of the parameter expansion

How It Works

The try it out exercise uses parameter expansion to demonstrate how parameter expansion works.

Here Documents

A here document is a special way of passing input to a command from a shell script. The document starts
and ends with the same leader after <<. For example:

#!/bin/sh

cat <<!FUNKY!
this is a here
document
!FUNKY!

How It Works

It executes the here document as if it were input commands.

Debugging Scripts

When an error occurs in a script, the shell prints out the line number with an error. You can use the set
command to set various shell option. Here are some of them.

21

Putting It All Together

The rest of this chapter is about designing a CD database application.

Requirements

The system should store basic information about each CD, search for CDs, and update or add new CDs.

Design

The three requirements--updating, searching and displaying the CD data--suggest that a simple menu
willbe adequate. Here is the example titles file.

Here is the associated track file.

Notes

The code for the CD database is included in the try it out section. The trap command allows the user to
use Ctrl-C.

22

Assignment 1

1 Write a SHELL SCRIPT to find the greatest number among the three numbers, which will
inputted through command line and also check the argument must be 3. If it is not 3 then give
error message.

2 Write a SHELL SCRIPT for calculator containing 5 arithmetic operations.

3 Write a SHELL SCRIPT to enter a number and find out whether it is prime or not.

4 Write a SHELL SCRIPT to display first n line of a file and the value of n will given through
keyboard.

5 Write a SHELL SCRIPT to print the number in reverse order.

6 Write a SHELL SCRIPT that displays the contents of the currently running script.

7 Write a SHELL SCRIPT to find out the highest temperature among the n numbers. The value
of n and temperatures will be given through keyboard.

8 Write a SHELL SCRIPT to display the process in the system every 30 seconds

9 Write a SHELL SCRIPT that displays the last 3 lines of the current directory duly preceeded
by the file name

10 Write a SHELL SCRIPT that accepts one or more filename as arguments & converts the
filenames to uppercase.

11 Write a SHELL SCRIPT that accept a pattern and filename as arguments and then count the
occurrences of the pattern in the file.

12 Write a SHELL SCRIPT to search a pattern from a database using egrep and fgrep.
The pattern and the filename should be entered through keyboard

13 Write a SHELL SCRIPT
a. To find the number of USERS currently LOGGED IN
b. Sort the users :

i) According to their names
ii) According to their terminal numbers
iii) According to their time login

14 Write a SHELL SCRIPT to create the following menu, enter an option and do according to
the given option :

a. Display the users and the terminal numbers
b. Display the current date and time
c. Display the current working directory & give the long listing of that directory.
d. display the detailed process information of all the users.

15 Given a file name and a user name in the command line argument . Write a SHELL SCRIPT

a. To find the type of the file.

23

b. Display the file.
c. copy the file to the home directory of the file to the given user.
d. change the ownership of the file to the given user and so it.

16 Date is given at the command line argument in the form day,month,year
Write a SHELL SCRIPT to find the calendar and hence to find the day of given date

a. if 3 arguments that indicate day,month and year.
b. if 2 arguments that indicate day and month . Year will be current year.
c. if 1 arguments that indicate day . current Year and month will be considered.
d. if no argument then current date will be considered.

17 Write a SHELL SCRIPT that will accept a string from the terminal and print a suitable
message “the string does not have at least 10 charecters.

18 Write a SHELL SCRIPT that accepts two directory name d1 & d2. Delete those files in d2
whose contents are identical to their namesakes in d1.

24

Chapter 2 - Processes and Signals

Processes and Signals

Processes and signals form a fundamental part of the UNIX operating environment, controlling almost all
activities performed by a UNIX computer system.

Here are some of the things you need to understand.

What is a Process?

The X/Open Specification defines a process as an address space and single thread of control that executes
within that address space and its required system resources.

A process is, essentially, a running program.

Process Structure

Here is how a couple of processes might be arranged within the operationg system.

Each process is allocated a unique number, a process identifier, or PID.

The program code that will be executed by the grep command is stored in a disk file.

25

The system libraries can also be shared.

A process has its own stack space.

The Process Table

The UNIX process table may be though of as a data structure describing all of the processes that are
currently loaded.

Viewing Processes

We can see what processes are running by using the ps command.

Here is some sample output:

The PID column gives the PIDs, the TTY column shows which terminal started the process, the STAT
column shows the current status, TIME gives the CPU time used so far and the COMMAND column shows
the command used to start the process.

Let's take a closer look at some of these:

The initial login was performed on virtual console number one (v01). The shell is running bash. Its status
is s, which means sleeping. Thiis is because it's waiting for the X Windows sytem to finish.

X Windows was started by the command startx. It won't finished until we exit from X. It too is sleeping.

26

The fvwm is a window manager for X, allowing other programs to be started and windows to be arranged
on the screen.

This process represents a window in the X Windows system. The shell, bash, is running in the new
window. The window is running on a new pseudo terminal (/dev/ptyp0) abbreviated pp0.

This is the EMACS editor session started from the shell mentioned above. It uses the pseudo terminal.

This is a clock program started by the window manager. It's in the middle of a one-minute wait between
updates of the clock hands.

System Processes

Let's look at some other processes running on this Linux system. The output has been abbreviated for
clarity:

Here we can see one very important process indeed:

In general, each process is started by another, known as its parent process. A process so started is
known as a child process.

When UNIX starts, it runs a single program, the prime ancestror and process number one: init.

27

One such example is the login procedure init starts the getty program once for each terminal that we can
use to long in.

These are shown in the ps output like this:

Process Scheduling

One further ps output example is the entry for the ps command itself:

This indicates that process 192 is in a run state (R) and is executing the command ps-ax.

We can set the process priority using nice and adjust it using renice, which reduce the priority of a
process by 10. High priority jobs have negative values.

Using the ps -l (forlong output), we can view the priority of processes. The value we are interested in is
shown in the NI (nice) column:

Here we can see that the oclock program is running with a default nice value. If it had been stated with
the command,

it would have been allocated a nice value of +10.

We can change the priority of a ruinning process by using the renice command,

So that now the clock program will be scheduled to run less often. We can see the modified nice value
with the ps again:

28

Notice that the status column now also contains N, to indicate that the nice value has changed from the
default.

Starting New Processes

We can cause a program to run from inside another program and thereby create a new process by using
the system. library function.

The system function runs the command passed to it as string and waits for it to complete.

The command is executed as if the command,

has been given to a shell.

Try It Out - system

1. We can use system to write a program to run ps for us.

2. When we compile and run this program, system.c, we get the following:

29

3. The system function uses a shell to start the desired program.

We could put the task in the background, by changing the function call to the following:

Now, when we compile and run this version of the program, we get:

How It Works

In the first example, the program calls system with the string "ps -ax", which executes the ps program.
Our program returns from the call to system when the ps command is finished.

In the second example, the call to system returns as soon as the shell command finishes. The shell
returns as soon as the ps program is started, just as would happen if we had typed,

at a shell prompt.

Replacing a Process Image

30

There is a whole family of related functions grouped under the exec heading. They differ in the way that
they start processes and present program arguments.

The exec family of functions replace the current process with another created according to the
arguments given.

If we wish to use an exec function to start the ps program as in our previous examples, we have the
following choices:

Try It Out - exclp

31

Let's modify our example to use an exexlp call.

Now, when we run this program, pexec.c, we get the usual ps output, but no Done. message at all.

Note also that there is no reference to a process called pexec in the output:

How It Works

The program prints its first message and then calls execlp, which searches the directories given by the
PATH environment variable for a program called ps.

It then executes this program in place of our pexec program, starting it as if we had given the shell
command:

Duplicating a Process Image

To use processes to perform more than one function at a time, we need to create an entirely separate
process from within a program.

We can create a new process by calling fork. This system call duplicates the current process.

Combined with exec, fork is all we need to create new processes to do our bidding.

32

The fork system call creates a new child process, identical to the calling process except that the new
process has a unique process ID and has the calling process as its parent PID.

A typical code fragment using fork is:

Try It Out - fork

Let's look at a simple example, fork.c:

33

This program runs as two process. A child prints a message five times. The parent prints a message only
three times.

How It Works

When the call to fork is made, this program divides into two separate processes.

Waiting for a Process

We can arrange for the parent process to wait until the child finishes before continuing by calling wait.

34

The wait system call causes a parent process to pause until one of its child processes dies or is stopped.

We can interrogate the status information using macros defined in sys/wait.h. These include:

Try It Out - wait

1. Let's modify our program slightly so we can wait for and examine the child process exit status. Call the
new program wait.c.

35

2. This section of the program waits for the child process to finish:

When we run this program, we see the parent wait for the child. The output isn't confused and the exit
code is reported as expected.

36

How It Works

The parent process uses the wait system call to suspend its own execution until status information
becomes available for a child process.

Zombie Processes

When a child process terminates, an association with its parent survives until the parent in turn either
terminates normally or calls wait.

This terminated child process is known as a zombie process.

Try It Out - Zombies

fork2.c is jsut the same as fork.c, except that the number of messages printed by the child and paent
porcesses is reversed.

Here are the relevant lines of code:

How It Works

37

If we run the above program with fork2 & and then call the ps program after the child has finished but
before the parent has finished, we'll see a line like this:

There's another system call that you can use to wail for child processes. It's called waitpid and youu can
use it to wait for a specific process to terminate.

If we want to have a parent process regularly check whether a specific child process had terminated, we
could use the call,

which will return zero if the child has not terminated or stopped or child_pid if it has.

Input and Output Redirection

We can use our knowledge of processes to alter the behavior of programs by exploiting the fact that open
file descriptors are preserved across calls to fork and exec.

Try It Out - Redirection

1. Here's a very simple filter program, upper.c, to convert all characters to uppercase:

38

When we run this program, it reads our input and converts it:

We can, of course, use it to convert a file to uppercase by using the shell redirection:

$ cat file.txt
this is the file, file.txt, it is all lower case.
$ upper < file.txt
THIS IS THE FILE, FILE.TXT, IT IS ALL LOWER CASE.

2. What if we want to use this filter fromwithin another program? This code, useupper.c, accepts a
file name as an argument and will respond with an error if called incorrectly:

3. The done, we reopen the standard input, again checking for any errors as we do so, and then use execl
to call upper:

39

4. don't forget that execl replaces the current process; provided there is no error, the remaining lines are
not executed:

How It Works

when we run this program, we can give it a file to convert to uppercase. The job is done by the program
upper. The program is executed by:

Because open file descriptors are preserved across the call to execl, the upper program runs exactly as it
would have under the shell command:

Threads

UNIX processes can cooperate; they can send each other messages and they can interrupt one another.

There is a class of process known as a thread which are distinct from processes in that they are separate
execution streams within a single process.

Signals

A signal is an event generated by the UNIX system in response to some condition, upon receipt of which a
process may in turn take some action.

Signal names are defined in the header file signal.h. They all begin with SIG and include:

40

Additional signals include:

If the shell and terminal driver are configured normally, typing the interrupt character (Ctrl-C) at the
keyboard will result in the SIGINT signal being sent to the foreground process. This will cause the
program to terminate.

We can handle signals using the signal library function.

41

The signal function itself returns a function of the same type, which is the previous value of the function
set up to handle this signal, or one of these tow special values:

Try It Out - Signal Handling

1. We'll start by writing the function which reacts to the signal which is passed in the parameter sig. Let's
call it ouch:

2. The main function has to intercept the SIGINT signal generated when we type Ctrl-C.

For the rest of the time, it just sits in an infinite loop, printing a message once a second:

3. While the program is running, typing Ctrl-C causes it to react and then continue.

When we type Ctrl-C again, the program ends:

42

How It Works

The program arranges for the function ouch to be called when we type Ctrl-C, which gives the SIGINT
signal.

Sending Signals

A process may send a signal to itself by calling raise.

A process may send a signal to another process, including itself, by calling kill.

43

Signals provide us with a useful alarm clock facility.

The alarm function call can be used by a process to schedule a SIGALRM signal at some time in the
future.

Try It Out - An Alarm Clock

1. In alarm.c, the first function, ding, simulates an alarm clock:

2. In main, we tell the child process to wait for five seconds before sending a SIGALRM signal to its
parent:

44

3. The parent process arranges to catch SIGALRM with a call to signal and then waits for the inevitable.

When we run this program, it pauses for five seconds while it waits for the simulated alarm clock.

This program introduces a new function, pause, which simply causes the program to suspend execution
until a signal occurs.

It's declared as,

How It Works

The alarm clock simulation program starts a new process via fork. This child process sleeps for five
seconds and then sends a SIGALRM to its parent.

45

A Robust
Signals Interface

X/Open specification recommends a newer programming interface for signals that is more robust:
sigaction.

The sigaction structure, used to define the actions to be taken on receipt of the signal specified by sig, is
defined in signal.h and has at least the following members:

Try It Out - sigaction

Make the changes shown below so that SIGINT is intercepted by sigaction. Call the new program
ctrlc2.c.

46

Running the program, we get a message when we type Ctrl-C because SIGINT is handled repeated;y by
sigaction.

Type Ctrl-\ to terminate the program.

47

How It Works

The program calls sigaction instead of signal to set the signal handler for Ctrl-C (SIGINT) to the function
ouch.

Signal Sets

The header file signal.h defines the type sigset_t and functions used to manipulate sets of signals.

The function sigismember determines whether the given signal is amember of a signal set.

The process signal mask is set or examined by calling the function sigprocmask.

48

sigprocmask can change the process signal mask in a number of ways according to the how argument.

The how argument can be one of:

If a signal is blocked by a process, it won't be delivered, but will remain pending.

A program can determine which of its blocked signals ar pending by calling the function sigpending.

A process can suspend execution until the delivery of one of a set of signals by calling sigsuspend.

This is a more general form of the pause function we met earlier.

sigaction Flags

The sa_flags field of the sigaction structure used in sigaction may contain the following values to modify
signal behavior

Functions that are safe to call inside a signal handler, those guaranteed by the X/Open specification either
to be re-entrant or not to raise signals themselves include:

49

Common Signal Reference

Here we list the signals that UNIX programs typically need to get involved with, including the default
behaviors:

50

The default action signals is abnormal termination of the process.

By default, these signals also cause abnormal termination. Additionally, implementation-dependent
actions, such as creation of a core file, may occur.

A process is stopped by default on receipt of one of the above signals.

51

SIGCONT restarts a stopped process and is ignored if received by a process which is not stopped.

The SIGCHLD signal is ignored by default.

Assignment 2

1. Write a c program to create a new process , replacing a process image, duplicating a process
image, waiting for a process using System call.

2. Write a c program to create the orphan process .

3. write a c program to create the zombie process .

52

Chapter 3- Inter-process Communication

Inter-process Communication: Pipes

Now, we look at pipes which allow more useful data to be exchanged between processes.

Here are some of the things you need to understand.

What is a Pipe?

We use the word pipe when we connect a data flow from one process to another.

Shell commands can be linked together so that the output of one process is fed straight to the input of
another.

For shell commands, this is entered as:

The shell arranges the standard input and output of the two commands, so that:

The shell has reconnected the standard input and output streams so that data flows from the keyboard
input through the two commands and is then output to the screen.

53

Process Pipes

Perhaps the simplest way of passing data between two programs is with the popen and pclose functions.
These have the prototypes:

popen

The popen function allows a program to invoke another program as a new process and either pass data
to or receive data from it.

pclose

When the process started with popen has finished, we can close the file stream associated with it using
pclose.

Try It Out - Using popen and pclose

Having initialized the program, we open the pipe to uname, making it readable and setting read_fp to
point to the output.

At the end, the pipe pointed to by read_fp is closed

54

When we run this program on one of the author's machine, we get:

How It Works

The program uses the popen call to invoke the uname command. It read some information and prints it
to the screen.

Sending Output to popen

Here's a program, popen2.c, that pipes dta to another. Here, we use the od (octal dump).

Try It Out -Sending Output to an External Program

Have a look at the following code, even type it in if you like...

55

When we run this program, we get the output:

How It Works

The program uses popen with the parameter w to start the od -c command, so that it can send data to it.
The results are printed.

From the command line, we can get the same output with the command:

Passing More Data

Multiple fread and fwrite can be used to process more data.

Try It Out - Reading Larger Amounts of Data from a Pipe

Here's a program, popen3.c, that reads all of the data from a pipe by using multiple fread.

56

The output we get, edited for brevity, is:

How It Works

The progran uses popen with an r parameter, so it continues reading from the file stream until there is
no more data available.

How popen is Implemented

57

The popen call runs the program you requested by first invoking the shell, sh, passing it the command
string as an argument.

This has two effects, one good, the other not so good.

1. invoking the shell allows complex shell commands to be started with popen.

2. Each call to popen invokes the requested program and the shell program. So, each call to popen then
results in two extra processes being started.

We can count all the lines in example program by cating

the files and then piping its output to wc -1 , which counts the number of lines.

On the command line, we would use:

Try It Out - popen Starts a Shell

This program uses exactly the command given above, but through popen so that it can read the results:.

58

when we run this program, the output is:

How It Works

The program shows that the shell is bing invoked to expand popen*.c to the list of all files starting with
popen and ending in .c and also feed the output from cat into wc.

The Pipe Call

The pipe function has the prototype:

pipe is passed an array of two integer file descriptors. It fills the array with two new file descriptors and
returns a zero.

Some errors defined in the Linux man pages for the operation are:

Any data written to fijle_descriptor[1] can be read back from file_descriptor[0].

59

Try It Out - The pipe Function

Here's a program, pipe1.c, that uses pipe to create a pipe..

When we run this program, the output is:

How It Works

The program creates a pipe using the two file descriptors file_pipes[]. It then writes data into the pipe
using the file descriptor file_pipes[1] and reads it back from file_pipes[0].

Try It Out - Pipes across a fork

1. This is pipe2.c. It start rather like the first examples, up until we make the call to fork.

60

2. We've made sure the fork worked, so if fork_result equals zero, we're in the child process:

3. Otherwise, we must be the parent process:

When we run this progra, the output is, as before:

61

How It Works

The program creates a pipe with the pipe call. It then uses the fork call to create a new process. The
parent writes to the pipe and the child read from the pipe.

Parent and Child Processes

The child process can be a different program than the parent.

Try It Out - Pipes and exec

Here we have a data producer program and a data consumer program.

1. For the first program, we adapt pipe2.c to pipe3.c. The lines that we've changed are shown shaded:

62

2. The 'consumer' program, pipe4.c, that reads the data is much similer:

63

Remembering that pipe3 invokes the pipe4 program for us, when we run pipe3, we get the following
output:

How It Works

The pipe3 program uses the pipe call to create a pippe and then using the fork call to create a new
process.

pipe4 receives the descriptor number of the pipe as an argument.

A call to execl is used to invoke the pipe4 program. The arguments to execl are:

64

Reading Closed Pipes

A read on a pipe that isn't open for writing will return 0, allowing the reading process to avoid the
'blocked forever' condition.

Pipes used as Standard Input and Output

We can arange for one of the pipe file descriptors to have a known value, usually the standard input, 0, or
the standard output, 1.

The advantage is that we can invoke standard programs, ones that don't expect a file descriptor as a
parameter.

There are two closedly related versions of dup, that have the prototypes:

File Descriptor Manipulation by close and dup

The dup always returns a new file descriptor using the lowest available number.

By first closing file descriptor 0 and then calling dup, the new file descriptor will have the number zero.

Try It Out - Pipes and dup

1. Modify pipe3.c to pipe5.c, using the following code:

65

The output from this program is:

How It Works

The program creates a pipe and then forks, creating a child process.

66

The parent and child have access to the pipe.

We can show the sequence pictorially. After the call to pipe:

After the call to fork:

When the program is rady to transfer data:

Named Pipes: FIFOs

We can exchange data with FIFOs, often referred to as named pipes.

A named pipe is a special type of file that exists as a name in the file system, but behaves like the
unnamed pipes that we've met already.

67

We can create a named pipe using the old UNIX mknod command:

$ mknod filename p
However, it is not in X/Open/ command list, so we use the mkfifo command:

$ mkfifo filename

From inside a program, we can use two different calls. These are:

Try It Out - Creating a Named Pipe

For fifo1.c, just type in the following code:

We can look for the pipe with:

How It Works

The program uses the mkfifo function to create a special file.

Accessing a FIFO

68

One very useful feature of named pipes is that, because they appear in the file system, we can use them in
commands where we would normally use a file name.

Try It Out - Accessing a FIFO File

1. First, let's try reading the (empty) FIFO:

2. Now try writing to the FIFO:

3. If we do both at once, we can pass information through the pipe:

NOTICE: the first two stages simply hang until we interrupt them with Ctrl-C.

How It Works

Since there was no data in the FIFO, the cat and echo programs blocks, waiting for some data to arrive
and some other process to read the data, respectively.

The thrid stage works as expected.

Opening a FIFO with open

69

The main restriction on opening FIFOs is that a program may not open a FIFO for reading and writing
with the mode O_RDWR.

A process will read its own output back from a pipe if it were opened read/write.

There are four legal combinations of O_RDONLY, O_WRONLY and the O_NONBLOCK flag. We'll consider
each in turn.

In this case, the open call will block, i.e. not return until a process opens the same FIFO for writing.

The open will now succeed and return immediately, even if the FIFO has not been opened for writing by
any process.

In this case, the open call will block until a process opens the same FIFO for reading.

This wil always return immediately, but if no process has the FIFO open for reading, open will return an
error, -1, and the FIFO won't be opened.

Try It Out - Opening FIFO Files

1. Start with the header files, a #define and the check that the correct number of command-line
arguments have been supplied:

70

2. Assuming that the program passed the test, we now set the value of open_mode from those
arguments:

3. We now check whether the FIFO exists, create it if nmecessayr, open it and give it output, wait, and
close it.

71

How It Works

This program allows us to specify on the command line the combination of O_RDONLY, O_WRONLY and
O_NONBLOCK that we wish to use.

O_RDONLY and O_WRONLY with no O_NONBLOCK

Let's try out a couple of combinations.

It allows the reader process to start, wait in the open command and then both programs to continue
when the second program opens the FIFO.

Here is another combination:

72

This time, the reader process executes the open call and continues immediately, even though no writer
process is present.

Reading and Writing FIFOs

Using the O_NONBLOCK mode affects how read and write calls behave on FIFOs.

A read on an empty blocking FIFO will wait until some data can be read.

A write on a full blocking FIFO will wait until the data can be written.

A write on a FIFO that can't accept all of the bytes being written will either:

Try It Out - Inter-process Communication with FIFOs

To show how unrelated processes can communicate using named pipes, we need two separate program,
fifo3.c and fifo4.c.

73

74

2. Our second program, the consumer, is much simpler. It reads and discards data from the FIFO.

When we run these porgrams at the same time, using the time command to time the reader, the output
we get is:

75

How It Works

Both programs use the FIFO in blocking mode. fifo3 is started first and wait for the FIFO to open. When
fifo4 is started, the pipe is unblocked and data transfer occurs.

Assignment 3

1 Write a program for inter process communication between two processes using signal system calls.

2 Write a program to pass the message from one process to another process using message buffer

3 Write a program which will accept a string as input from the command console and send it as
a message to the receiver program. The receiver program upon receiving the message from the
sender will display the received message as well as send an acknowledgment to the sender
program. The sender program will then display “Acknowledgment received from receiver” and
then will wait for the next user input from the console.

76

Chapter 4 - Semaphores

Semaphores

We will now look at a set of Interprocess Communiction Facilities that were introducted in the AT&T
System V.2 release of UNIX.

Semaphores

A semaphore is a special varible that takes only whole positive numbers and upon which only two
operations are allowed: wait and signal. They are used to ensure that a single executing process has
exclusive access to a resource.

Here are the signal notations:

Semaphore Definition

A binary semaphore is a variable that can take only the values 0 and 1.

The definition of p and v are surprisingly simple. Suppose we have a semaphore variable, sv. The two
operations are then defined as:

A Theoretical Example

Supposed we have two processes proc1 and proc2, both of which need exclusive access to a database at
some point in their execution.

We define a single binary semaphore, sv, that starts with the value 1.

The required pseudo-code is:

77

Here's a diagram showing how the p and v operatons act as a gate into critical sections of code:

UNIX Semaphore Facilities

All the UNIX semaphore functions operate on arrays of general semaphores, rahter than a single binary
semaphore.

The semaphore function definitions are:

semget

The semget function creates a new semaphore or obtains the semaphore key of an existing semaphore.

78

semop

The function semop is used for changing the value of the semaphore:

The first parameter, sem_id, is the semaphore identifier, as returned from semget.

The second parameter, sem_ops, is a pointer to an array of structures, each of which will have at least the
following members:

semctl

The semctl function allows direct control of semaphore information:

The command parameter is the action to take and a fourth parameter, if present, is a union semun,
which must have at least the following members:

Here are two common values of command are:

79

Using Semaphores

To experiment with semaphores, we'll use a single program, sem1.c, which we can invoke several times.

We'll use an optional parameter to specify whether the program is responsible for creating and
destroying the semaphore.

Try It Out - Semaphores

1. After the #includes, the function prototypes and the global variable, we come to the main function. It
creates the semaphores.

2. The we have a loop which entersa and leaves the critical section ten times.

There, we first make a call to semaphore_p which sets the semaphore to wait.

80

3. After the critical section, we call semaphore_v, setting the semaphore available.

4. The function set_semvalue initializes the semaphore using the SETVAL command in semctl call.

5. The del_semvalue function has almost the same form, except the call to semctl uses the command
IPC_RMID to remove the semaphore's ID:

81

6. semaphore_p changes the semaphore by -1 (waiting):

7. semaphore_v is identical except for setting the sem_op part of the sembuf structure to 1, so that the
semaphore becomes available:

82

Here's some sample output, with two invocations of the program:

How It Works

The program sets up a semaphore. It then loops ten times, with pseudo-random waits in its critical and
non-critical sections.

The critical section is guarded by calls to our senaphore_p and senaphore_v functions.

Assignment 4

1 Write a program to process synchronization using semaphore. Implement semaphore as different data
structure

83

References:

1. UNIX, concepts and applications, Sumitabha Das
2. Linux Programming 3rd Edition, Neil Mathew, Richard Stones

 1

SILIGURI INSTITUTE OF TECHNOLOGY

COMPUTER SCIENCE
AND

ENGINEERING DEPARTMENT

INTERNET TECHNOLOGY

LABORATORY MANUAL

LM Rev No: 01

 2

Contents
JavaScript .. 17

3.0 How to Put a JavaScript Into an HTML Page ... 17

3.1Declaring (Creating) JavaScript Variables ... 18

3.2 Conditional Statements ... 19

3.2.1 If Statement... 19

3.2.2 If...else Statement ... 19

3.2.3 The JavaScript Switch Statement .. 20

3.3.4 Alert Box.. 21

3.3.5 Confirm Box .. 21

3.3.6 Prompt Box ... 21

3.3.6 How to Define a Function .. 22

3.3.7 The for Loop ... 22

3.3.8 The while loop ... 23

3.3.9 The do...while Loop ... 23

3.3.10 JavaScript For...In Statement ... 24

3.4 Events ... 25

3.4.1.1 onLoad and onUnload ... 25

3.4.1.2 onFocus, onBlur and onChange ... 26

3.4.1.3 onSubmit .. 26

3.4.1.4 onMouseOver and onMouseOut... 26

3.5 JavaScript Form Validation ... 26

3.5.1 Required Fields ... 27

4.1 What is PERL? .. 29

4.2 PERL Features ... 29

4.3 Is Perl Compiled or Interpreted? ... 29

4.3.1 PERL Syntax Overview... 29

4.4 PERL Variable Types ... 31

5.0 Socket Programming using Java ... 33

5.1 ServerSocket Class Methods... 34

5.3 Socket Class Methods ... 36

5.7 Socket Client Example .. 38

6.0 RMI ... 40

6.2 Serializable Classes ... 41

 3

6.3 Remote Classes and Interfaces.. 41

6.3.1 Example code of RMI Interface ... 43

6.5 Programming a Client ... 44

8.2 How to create a banner using Applet? .. 56

8.3 How to go to a link using Applet? .. 57

References: ... 58

 4

HTML

1. BASICS OF HTML

 The Web pages or materials in the form of hypermedia documents accessed through

the Internet, cab is located anywhere in the world.
 No matter where they are originated, most of the web documents are created using

Hypertext Markup Language (HTML). HTML is powerful authoring language and
found in different versions like HTML 4.2, HTML 4.0, HTML 3.2, HTML 3.0 and HTML
2.

 HTML element can be used to define document structure & format, HTML element is
the inclusive region defined by either a single tag or a pair of tags. A tags is a string
in the language surrounded by a less than (<) and a greater than (>) sign. An
opening tag does not begin with a slash (/). An ending or closing tag is a string that
begins with a slash (/).

 HTML documents format textual information with embedded markup tags that
provide style and structure information. Whole document in HTML is surrounded by
<HTML> and </HTML>.

1.1 HOW TO CREATE HTML DOCUMENT

HTML document cab is created using any HTML editor and text editor like notepad etc.

1.3 STEPS FOR CREATING A SIMPLE HTML PROGRAM

1. Go to Start -> Programs->Accessories->Notepad.

2. Begin with a document type tag and an <HTML> opening tag. Enter the
 following line in your doc.

<HTML>

3. Indicate that you are beginning the head element of document by issuing the
 <HEAD> opening tag. If a <HEAD> element is included, it must appear within
 an <HTML> element. The following line should appear next in your document:

<HEAD>

4. The <TITLE> element is used to indicate the title of an HTML document.
 <TITLE> tags are placed with in the head component of a document and the title is
placed between the

 5

Opening and closing <TITLE> tags. Add this <TITLE> element to your document.

<TITLE>My First Page</TITLE>

5. To end the head area issues a <HEAD> closing tag.
</HEAD>

Thus the <HEAD> element is nested within the <HTML> element.

6. At this point the body of the document is developed. A <BODY> opening tag
 indicates that this point has been reached. Enter the following line.

<BODY>

7. In this case, the body of document contains a simple text statement for now; add
 the following statement in your file:

Hello World!

8. A </BODY> closing tag marks the end of the <BODY> element. Similar to the
 Head element, the <BODY> element is also completely nested within the
 <HTML> element. To end the <BODY> element, issue the closing tag in your
 document.

</BODY>

9. Finally, terminate the <HTML> tag with </HTML> as shown below:

 6

10. Save your document as mypage.html

11. To view the document, open the .html document in the browser.

Here you will see a sample HTML page with the basic structure.

<html>
<head>
<title> Title that is displayed at the top of your web browser</title>
</head>
<body>
<center>
This is my new web page.
</center>
</p>
</body>
</html>

 The <html> tag just tells the browser where the HTML starts.
 The <title> tells your browser the title of the page and you will see this text at the

very top of your web browser.
 The body of your site should be included inside the <body> tags.

Text & Font commands

SL
No.

Tags Description

1 Comment tag: Comments in HTML take the form
 <!-- comment here-->

2 Heading tag: There are 6 types of heading tag, h1,h2,…h6.
 <h1> level1 heading </h1>

3 New paragraph <p> starts a new paragraph and creates a blank line
between your new paragraph and the one
above it.
 The closing tag is </p> but is not mandatory.

4 Line Break:
 This will break your text to the next line . Two

 tags is equivalent to one <P> tag.
There’s no closing tag needed for this one.

5 Insert a horizontal
line

<hr> This tag is used to insert a horizontal line
across the width of the page. This tag does not have
an end tag.

6 Bold Closing tag is

 7

 Or Closing tag is
7 Underline <u> Closing tag is </u>

8 Italics <i> Closing tag is </i>
9 Centering text <center> Closing tag is </center>

10 Left aligning text

<p align=”left”> Just use </p> for the closing tag

11 Right aligning text <p align=”right”> Just use </p> for the closing tag

12 Change text color
The ending for any font tag is just

13 Changing font face
14 Change font size (only goes up to 7)

15 Blinking Text <blink> (only works in Netscape)

16 Scrolling Text <marquee> (only works in Internet Explorer)

17 Preformatted Text

Tag
the <pre> tag displays preformatted text. The pre
element displays all white space and line break
exactly as they appear inside the tag. Closing tag is
</pre>

18 Order list Order list display a ordered or numbered list of items

 1st item name(No closing tag for
list item)
 2nd item name
 .
 .
 .
 Closing tag is

19 Unordered list tag Unorder list display unnumbered or bulleted list of
items

 1st item name(No closing tag for
list item)
 2nd item name
 Closing tag is

20

Definition list tag

dl tag encloses definition list, dt tag encloses
definition term, dd tag encloses definition
description. dt & dd tag do not require cosing tag.

 8

 <dl>
 <dt> Triangle <dd> Three sided figure
 .
 .
 .
 </dl>

21 Image insert The img tag is used to embed an image in an HTML
page. The img tag does not require an end tag.
<img src=”aaa.jpg” width =200 height=250
alt=”This is a picture”>
alt tag is used to pop up a text when you run the
mouse over the graphic.
To adjust the width and height of the image width
and height tag is needed.

22 Insert sound sound

23 Insert video

24 Background <body bgcolor=green> (for color)
<body background=”bbb.jpg”> (for picture)
< bgsound src=”aaa.mp3” loop=3> (for sound)

25 Hyperlink yahoo (for
another site)
 aa
(for another page)
 section1
(for a section of a page)

For linking a section you have to declare that section
on that page by
 sss
For changing the link color
<body link=”green” vlink=”yellow” alink=”purple”>
In this example, hyperlink will be green, links that
have already been visited will be yellow and active
links will be purple.

26 Basic Table Tags:

Three most important tags are
<table> for opening table
<tr> represents table row
<td> represents a cell inside the row
<th> represents table header

<table>

 9

 <caption align=top>Example of table
caption</caption>
<tr> <th>A</th> <th>B</th> <th>C</th>
</tr>
<tr> <td>X</td> <td>Y</td> <td>Z</td>
</tr>
<tr> <td>U</td> <td>V</td> <td>W</td>
</tr>
</table>
For Entering Table Border:
<table border=2>
For Changing a Table’s Border Color
<table border=”2” bordercolor=”red”>

27 Adjusting Table
Cell spacing and
Cell Padding

The cellspacing attribute adjusts the space between
the cells and cellpadding adjusts the space within
(around) the cell.
<table border=2 cellspacing=10 cellpadding=3>

28 Specifying a Table
Width and Height

You can specify the width and height of a table by
using either a percentage or a pixel width.
<table height=”200”width =”300” border=2>

29 Setting Column
Widths

<td width=”70%”> (You can specify width by
percentage or pixel width)

30 Horizontally &
Vertically Aligning
the Content Inside
Tables

<td width=”210” align=”center” valign=”top”>

1.2 FORM

Form tag creates an HTML form. It contain interface elements such as text fields, buttons,
checkboxes, radio buttons and selection list.
<form name=”sss” >
 </form>

Text Field:
 <input type=”text” name = fname size=20 maxlength=100>

 Password field

 10

<input type=”password” name = pwd size=5 maxlength=4>

Radio Button
<input type=”radio” name= ”aa” value=”a1” checked> a1
<input type=”radio” name= ”aa” value=”a2” > a2
<input type=”radio” name= ”aa” value=”a3”> a3

Checkbox
<input type=”checkbox” name= ”aa” value=”a1” > a1
<input type=” checkbox” name= ”aa” value=”a2” > a2
<input type=” checkbox” name= ”aa” value=”a3”> a3

Text area
<textarea name=”aa” clos=40 rows=5> xxxxxxxxx </textarea>

Select

Allows the user to select items from a pull down menu.
<select name=”aaa” size=3 multiple >
<option>a1
<option>a2
<option>a3
<option>a4
</select>

File
<input type=”file” name=”aa”>

Action Button

 <input type=”reset” name=”aaa” value=”Clear Form”> (For reset Button)
<input type=”submit” name=”bbb” value=”Done”> (For submit Button)

1.3 Frames

Frame tag creates a frame . In this document the normal BODY tag is replaced by the
FRAMESET tag.
<html>
<head>
<title> Simple frameset example</title>
</head>
<frameset cols=” 20% , 80%”>
<frame src=”ex1.htm” name=”frame1”>
<frame src=”ex2.htm” name=”frame2”>

 11

</frameset>
</html>

The above example is for split your window into two parts column wise .You can give
the value in percentage or in the form of value of pixel. Here you have to create pages
ex1.htm and ex2.htm.

Now if you want to split your window row wise in the 3 parts then the syntax will be in the
form
<html>
<head>
<title> Simple frameset example</title>
</head>
<frameset rows=” 200 , 100,*”>
<frame src=”ex1.htm” name=”frame1”>

<frame src=”ex2.htm” name=”frame2”>
<frame src=”ex3.htm” name=”frame3”>
</frameset>
</html>
* denote the rest of the value of pixel.

Now you want to split you window into two rows and then you split the 2nd part into two
columns, then the syntax will be
<html>
<head>
<title> Simple frameset example</title>
</head>
<frameset rows=” 200 , * ”>
<frame src=”ex1.htm” name=”frame1”>
<frameset cols=” 20% , 80%”>
<frame src=”ex2.htm” name=”frame2”>
<frame src=”ex3.htm” name=”frame3”>
</frameset>
</frameset>
</html>

Assignments on HTML

1. Start your web page with an <html> tag
 i) Add a heading.
 ii) Add a title.
 iii) Start the <body> section.
 iv) Add the following text using <H1> and </H1> tags:

 12

This Web page was designed by (your name)
 v) Add the following text using <H2> and </H2> tags: My HTML assignment
 vi) Add a horizontal line
 vii) Insert an image to your web page.
Note: You should then refer to your image with just the filename, and NOT the entire
pathname to the file.
 viii) Add another horizontal line.
 ix) Enter a paragraph of text.
 Write about things you have learned in html.
Make sure the text in this paragraph is a color other than black, but something one can see.
 Add a link that takes you to your favorite webpage.
x) Start a new paragraph. Add a three item ordered list. Make it creative (don’t just say item
1, item 2, etc… and keep it clean)!
 xi) Close out your body and html tags.

2. Start your web page with an <html> tag
 i) Add a heading.
 ii) Add a title.
 iii) Start the <body> section.
 iv) Start a new paragraph.
Use alignment attribute,
Use bold, italic, underline tags,
Use font tag and associated attributes,
Use heading tags,
Use preserve tag,
Use non breaking spaces (escape character).

3. Start your web page with an <html> tag
 i) Add a heading.
 ii) Add a title.
 iii) Start the <body> section.
 iv) Start a new paragraph.
Create Hyperlinks:
(a) Within the HTML document.
(b) To another URL.
(c) To a file that can be rendered in the browser.

4. Start your web page with an <html> tag
 i) Add a heading.
 ii) Add a title.
 iii) Start the <body> section.
Create an unordered list,

 13

Create an ordered list,
Use various bullet styles,
Created nested lists,
Use the font tag in conjunction with lists,
Create definition lists,
Use graphics as bullets.

5. Start your web page with an <html> tag
 i) Add a heading.
 ii) Add a title.
 iii) Start the <body> section.
a) Create a simple table
Create borders and adjust border size.
 Adjust table cell spacing.
 Change border color.
 Change table background color.
b) Align a new table on HTML page.
Perform cell text alignment,
 Create multi-column tables,
 Display information about your academic qualification into this table.

6. Start your web page with an <html> tag
 i) Add a heading.
 ii) Add a title.
 iii) Start the <body> section.
Create a frameset:
Use frame tags,
Create vertical (column) frames,
Create horizontal (row) frames,
Create complex framesets,
Use the hyperlink tag to target displaying an HTML page to another frame.

7. Start your web page with an <html> tag
 i) Add a heading.
 ii) Add a title.
 iii) Start the <body> section.
Create a simple HTML form.
Use the input tag to create a: text box; text area box; check box; list box; radio button;
password field; popup menu; hidden field. Use submit and reset buttons. Create an
admission form using the above information.
8. Create a web page that will include an image. Then create image map to watch different
parts of that image closely.

 14

9. Using frames as an interface, create a series of web pages where the theme is to provide
resources (internet, intranet, static HTML pages) pertaining to the subject of HTML. Ideally,
your goal is to create a resource that you can use long after this module when needing
information on HTML. As a minimum requirement to this assignment your webpage should:
• Consist of at least 3 frames.
• Contain at least 5 URLs to internet and/or intranet sites that you can reference as part of
your job.
• Contain at least 5 references to documents that you have created that you use on a regular
basis.
• Contain at least 5 references to documents others have created that you use on a regular
basis.
• Be organized in a fashion that is logical and intuitive to you.
• Is done with enough quality that you would not be opposed to it being a link at another
site.

10. Create a web page as you wish and the html elements of the page will be styled by CSS.

Cascading Style sheets

2.0 CSS syntax

The basic css syntax is made up of 3 parts: selector {property: value}

<html>
<head>
<style type="text/css">
p
{
color: red
}
</style>
</head>
<body>
<p>
The text in this CSS example will be red.
</p>
</body>
</html>

2.1 Placing Style Sheets

Style sheets can be added to HTML pages on 3 different levels: in-line, internal and external.

2.1.1 Internal Style Sheets

The internal style sheet code (<style type="text/css">) is placed in between the head tags.

 15

The following CSS code example shows how this is done.

The internal style sheet code, <style type="text/css">, doesn't do anything visually itself. It simply
tells the web browser that an internal style sheet will be used.

<html>
<head>
<style type="text/css">
</style>
</head>

<body>
</body>
</html>

The internal style sheet in the following CSS code example tells the web browser to make the text
color in the paragraph the color red.

<html>
<head>
<style type="text/css">
p
{
color: red
}
</style>
</head>

<body>
<p>
This CSS example is using an internal style sheet. The color of the text in this paragraph will be red.
</p>
</body>
</html>

2.1.2 Inline Style sheet

The following CSS example shows how to insert an in-line style sheet.

<html>
<head>
</head>

<body>
<p style="font-weight: bold">
The text in this CSS example will be made bold.
</p>
</body>
</html>

 16

If you want to specify multiple properties in an in-line style sheet, each CSS statement must be
separated by a semi-colon (;).

The following CSS code shows how this is done.

<html>
<head>
</head>

<body>
<p style="font-weight: bold; color: red">
The text in this CSS example will be made bold and the text color will be red.
</p>
</body>
</html>

1.1.3 External Style Sheets

The CSS code wich is used to link to the external style sheet is
<link rel="stylesheet" type="text/css" href="test.css" />.

2.1.4 Creating a CSS File

To create a sample CSS file, simply open up notepad, or any other plain text editor and type the
following CSS code. Do not add any HTML tags to the external style sheet.

CSS code

body
{
background-color: blue
}
p
{
color: red
}

Next, save the file with a ".css" extension. Save the CSS file and name it "test.css"

Now create an HTML file with the following code.

<html>
<head>
<link rel="stylesheet" type="text/css" href="test.css" />
</head>
<body>
<p>
The text in this paragraph will be a red font and the background will be blue.
</p>

 17

</body>
</html>

Now save the HTML file as "example.htm" or "example.html". Next, open the "example.htm" file in
your web browser. You have now made a web page that uses external style sheets.

Assignments on Style sheets

Problem 1 Create a html page containing some paragraph, some listing of items as follows.

 Tea
o Black tea
o Green tea

 Coffee

Create a CSS rule that makes all text in the paragraph 1.5 times larger than the base font of
the system and colors of the text red, and shifts all the list items right by 3ems,and the
nested items by 5ems.Use inline style sheets.

Problem 2 Write a css rule that places a background image at the bottom left corner of the
page and tiling it horizontally .The image should remain in place when the user scrolls up
or down. Use external style sheet.

Problem 3. Write a CSS rule that changes the color of all elements containing attribute
class =”greenMove” to green and all heading elements a font size =36pt.Use internal style
sheet

Problem 4.Write a web document containing three different style sheets.

JavaScript

3.0 How to Put a JavaScript Into an HTML Page

<html>
<body>
<script type="text/javascript">
document.write("Hello World!");
</script>
</body>
</html>

The code above will produce this output on an HTML page:

Hello World!

 18

3.1.1 Explanation:

To insert a JavaScript into an HTML page, we use the <script> tag. Inside the <script> tag we use the
type attribute to define the scripting language.

So, the <script type="text/javascript"> and </script> tells where the JavaScript starts and ends:

<html>
<body>
<script type="text/javascript">
...
</script>
</body>

</html>

The word document.write is a standard JavaScript command for writing output to a page.

By entering the document.write command between the <script> and </script> tags, the browser
will recognize it as a JavaScript command and execute the code line. In this case the browser will
write Hello World! to the page:

<html>
<body>
<script type="text/javascript">
document.write("Hello World!");
</script>
</body>
</html>

The two forward slashes at the end of comment line (//) is the JavaScript comment symbol.
This prevents JavaScript from executing the --> tag.

3.1Declaring (Creating) JavaScript Variables

You can declare JavaScript variables with the var statement:

var x;

var carname;

However, you can also assign values to the variables when you declare them:

var x=5;

var carname="Volvo";

 19

After the execution of the statements above, the variable x will hold the value 5, and carname will
hold the value Volvo.

3.2 Conditional Statements

In JavaScript we have the following conditional statements:

 if statement - use this statement if you want to execute some code only if a
specified condition is true

 if...else statement - use this statement if you want to execute some code if the
condition is true and another code if the condition is false

 if...else if....else statement - use this statement if you want to select one of many
blocks of code to be executed

 switch statement - use this statement if you want to select one of many blocks of
code to be executed

3.2.1 If Statement

You should use the if statement if you want to execute some code only if a specified condition is
true.

Syntax
if (condition)
{
code to be executed if condition is true
}

Example 1
<script type="text/javascript">
//Write a "Good morning" greeting if
//the time is less than 10
var d=new Date();
var time=d.getHours();

if (time<10)
{
document.write("Good morning");
}
</script>
3.2.2 If...else Statement

If you want to execute some code if a condition is true and another code if the condition is not true,
use the if....else statement.

Syntax
if (condition)
{

 20

code to be executed if condition is true
}
else
{
code to be executed if condition is not true
}

Example
<script type="text/javascript">
//If the time is less than 10,
//you will get a "Good morning" greeting.
//Otherwise you will get a "Good day" greeting.
var d = new Date();
var time = d.getHours();

if (time < 10)
{
document.write("Good morning!");
}
else
{
document.write("Good day!");
}
</script>
3.2.3 The JavaScript Switch Statement

You should use the switch statement if you want to select one of many blocks of code to be
executed.

Syntax
switch(n)
{
case 1:
 execute code block 1
 break;
case 2:
 execute code block 2
 break;
default:
 code to be executed if n is
 different from case 1 and 2
}

Example
<script type="text/javascript">
//You will receive a different greeting based
//on what day it is. Note that Sunday=0,
//Monday=1, Tuesday=2, etc.
var d=new Date();
theDay=d.getDay();
switch (theDay)
{

 21

case 5:
 document.write("Finally Friday");
 break;
case 6:
 document.write("Super Saturday");
 break;
case 0:
 document.write("Sleepy Sunday");
 break;
default:
 document.write("I'm looking forward to this weekend!");
}
</script>

3.3.4 Alert Box

An alert box is often used if you want to make sure information comes through to the
user.When an alert box pops up, the user will have to click "OK" to proceed.

Syntax:

alert("sometext");

3.3.5 Confirm Box

A confirm box is often used if you want the user to verify or accept something.When a
confirm box pops up, the user will have to click either "OK" or "Cancel" to proceed. If the
user clicks "OK", the box returns true. If the user clicks "Cancel", the box returns false.

Syntax:

confirm("sometext");

3.3.6 Prompt Box

A prompt box is often used if you want the user to input a value before entering a
page.When a prompt box pops up, the user will have to click either "OK" or "Cancel" to
proceed after entering an input value. If the user clicks "OK" the box returns the input
value. If the user clicks "Cancel" the box returns null.

Syntax:

prompt("sometext","defaultvalue");

 22

3.3.6 How to Define a Function

The syntax for creating a function is:

function functionname(var1,var2,...,varX)
{
some code
}

var1, var2, etc are variables or values passed into the function. The { and the } defines the
start and end of the function.

3.3.7 The for Loop

The for loop is used when you know in advance how many times the script should run.

Syntax

for (var=startvalue;var<=endvalue;var=var+increment)
{
 code to be executed
}
Example
<html>
<body>
<script type="text/javascript">
var i=0;
for (i=0;i<=10;i++)
{
document.write("The number is " + i);
document.write("
");
}
</script>
</body>
</html>

Result:-

The number is 0
The number is 1
The number is 2
The number is 3
The number is 4
The number is 5
The number is 6
The number is 7

 23

The number is 8
The number is 9
The number is 10

3.3.8 The while loop

The while loop is used when you want the loop to execute and continue executing while the
specified condition is true.

while (var<=endvalue)
{
 code to be executed
}

Example

<html>
<body>
<script type="text/javascript">
var i=0;
while (i<=10)

{
document.write("The number is " + i);
document.write("
");
i=i+1;
}
</script>
</body>
</html>

Result :-

The number is 0
The number is 1
The number is 2
The number is 3
The number is 4
The number is 5
The number is 6
The number is 7
The number is 8
The number is 9
The number is 10

3.3.9 The do...while Loop

Syntax

do

 24

{
 code to be executed
}
while (var<=endvalue);

Example

<html>
<body>
<script type="text/javascript">
var i=0;
do
{
document.write("The number is " + i);
document.write("
");
i=i+1;
}
while (i<0);
</script>
</body>
</html>

Result :-

The number is 0

3.3.10 JavaScript For...In Statement

The for...in statement is used to loop (iterate) through the elements of an array or through
the properties of an object.

The code in the body of the for ... in loop is executed once for each element/property

Syntax

for (variable in object)
{
 code to be executed
}

The variable argument can be a named variable, an array element, or a property of an object.

Example

Using for...in to loop through an array:

<html>
<body>

 25

<script type="text/javascript">
var x;
var mycars = new Array();
mycars[0] = "Saab";
mycars[1] = "Volvo";
mycars[2] = "BMW";

for (x in mycars)
{
document.write(mycars[x] + "
");
}
</script>
</body>
</html>

3.4 Events

By using JavaScript, we have the ability to create dynamic web pages. Events are actions that can be
detected by JavaScript.

Every element on a web page has certain events which can trigger JavaScript functions. For
example, we can use the onClick event of a button element to indicate that a function will run when
a user clicks on the button. We define the events in the HTML tags.

3.4.1 Examples of events:

 A mouse click
 A web page or an image loading
 Mousing over a hot spot on the web page
 Selecting an input box in an HTML form
 Submitting an HTML form
 A keystroke

Note: Events are normally used in combination with functions, and the function will not be
executed before the event occurs!

3.4.1.1 onLoad and onUnload

The onload and onUnload events are triggered when the user enters or leaves the page.

The onload event is often used to check the visitor's browser type and browser version, and load
the proper version of the web page based on the information.

Both the onload and onUnload events are also often used to deal with cookies that should be set
when a user enters or leaves a page. For example, you could have a popup asking for the user's
name upon his first arrival to your page. The name is then stored in a cookie. Next time the visitor
arrives at your page, you could have another popup saying something like: "Welcome John Doe!".

 26

3.4.1.2 onFocus, onBlur and onChange

The onFocus, onBlur and onChange events are often used in combination with validation of form
fields.

Below is an example of how to use the onChange event. The checkEmail() function will be called
whenever the user changes the content of the field:

<input type="text" size="30"
id="email" onchange="checkEmail()">
3.4.1.3 onSubmit

The onSubmit event is used to validate ALL form fields before submitting it.

Below is an example of how to use the onSubmit event. The checkForm() function will be called
when the user clicks the submit button in the form. If the field values are not accepted, the submit
should be cancelled. The function checkForm() returns either true or false. If it returns true the
form will be submitted, otherwise the submit will be cancelled:

<form method="post" action="xxx.htm"
onsubmit="return checkForm()">
3.4.1.4 onMouseOver and onMouseOut

onMouseOver and onMouseOut are often used to create "animated" buttons.Below is an example of
an onMouseOver event. An alert box appears when an onMouseOver event is detected:

<a href="http://www.abc.com"
onmouseover="alert('An onMouseOver event');return false">

3.5 JavaScript Form Validations

JavaScript can be used to validate input data in HTML forms before sending off the content
to a server.

Form data that typically are checked by a JavaScript could be:

 Has the user left required fields empty?
 Has the user entered a valid e-mail address?
 Has the user entered a valid date?
 Has the user entered text in a numeric field?

 27

3.5.1 Required Fields

The function below checks if a required field has been left empty. If the required field is
blank, an alert box alerts a message and the function returns false. If a value is entered, the
function returns true (means that data is OK):

function validate_required(field,alerttxt)
{
with (field)
{
 if (value==null||value=="")
 {
 alert(alerttxt);return false;
 }
 else
 {
 return true;
 }
}
}
The entire script, with the HTML form could look something like this
<html>
<head>
<script type="text/javascript">
function validate_required(field,alerttxt)
{
with (field)
{
if (value==null||value=="")
 {alert(alerttxt);return false;}
else {return true}
}
}
function validate_form(thisform)
{
with (thisform)
{
if (validate_required(email,"Email must be filled out!")==false)
 {email.focus();return false;}
}
}
</script>
</head>
<body>
<form action="submitpage.htm"

 28

onsubmit="return validate_form(this)"
method="post">
Email: <input type="text" name="email" size="30">
<input type="submit" value="Submit">
</form>
</body>
</html>

Assignments on JavaScript
1.Design a html page that has three fields email, name and age and a Submit button. If you
enter wrong email(e.g. “@” sign is missing), name (>10 characters), age (>100)
corresponding alert message /s will be fired.

 2.Write a program using javascript where the program chooses a number between 1 and
20. You are then prompted to enter a guess. If the player guess wrong then the prompt
appears again until the guess is correct. When the player has made a successful guess the
computer will give a "Well guessed!" message, and the program will exit.

3.Display a clock using javascript

4.Write a javascript code to create a button.If you click on it,a prompt box will appear
asking your name. If you enter your name and click the ‘ok’ button a greeting message will
appear.

5.Design an html page to compare two numbers supplied by user. The bigger number will
be displayed in a separate field. Use array object.

6.Design an html page that has three buttons “red” ,“green”, “blue”. If you click any of them
the background color also changes as the name of the button showing the corresponding
alert message.

7.Write a program in javascript that will take two numbers as user input and calculate
their sum, product, division and modulus by clicking the appropriate button/s.

8.Validate e-mail, phone number, name using regx.

PERL

Perl is a general-purpose programming language originally developed for text
manipulation and now used for a wide range of tasks including system administration, web
development, network programming, GUI development, CGI and more.

 29

4.1 What is PERL?

 Perl is a stable, cross platform programming language.
 Perl stands for Practical Extraction and Report Language.
 Perl was created by Larry Wall.
 Perl is a programming language which can be used for a large variety of tasks. A

typical simple use of Perl would be for extracting information from a text file and
printing out a report or for converting a text file into another form.

4.2 PERL Features

 Perl takes the best features from other languages, such as C, awk, sed, sh, and BASIC,
among others.

 Perls database integration interface (DBI) supports third-party databases including
Oracle, Sybase, MySQL and others.

 Perl works with HTML, XML, and other mark-up languages.
 Perl supports both procedural and object-oriented programming.
 The Perl interpreter can be embedded into other systems.

4.3 Is Perl Compiled or Interpreted?

Perl is implemented as an interpreted (not compiled) language. Traditional compilers
convert programs into machine language. When you run a Perl program, it's first
compiled into a byte code, which is then converted (as the program runs) into machine
instructions. So it is not quite the same as shells, which are "strictly" interpreted
without an intermediate representation. Nor it is like most versions of C or C++, which
are compiled directly into a machine dependent format.

4.3.1 PERL Syntax Overview

1. Perl statements end in a semi-colon: print "Hello, world";
2. Comment Statement: # This is a comment
3. White Space is irrelevant: print "Hello, world";
4. Double quotes or single quotes may be used around literal strings:

 print "Hello, world";
print 'Hello, world';

BUT THE IMPORTANT PONT IS THAT - A String in-between Single quotes (‘ ‘) has value
exactly the sequence of characters. In case of (“ “) Substitution is occurred.

Example:

 30

$i=10;
$s1=’winter for last $i months’;
$s2=”winter for last $i months”;

print $i;
print $s1;
print $s2;

Output:
10
winter for last $i months
winter for last 10 months

4.3.2 Chomp () function in PERL

The chomp() function will remove (usually) any newline character from the end of a string. When
reading user input from the standard input stream (STDIN) for instance, you get a newline
character with each line of data. chomp() is really useful in this case because you do not need to
write a regular expression and you do not need to worry about it removing needed characters.

Normal Syntax:

print "How old are you?";
$age = <>;
print "What is your favorite color?";
$color = <>;
print "You are $age, and your favorite color is $color.";

Output:

Using Chomp():

print "How old are you?";
chomp($age = <>);
print "What is your favorite color?";
chomp($color = <>);
print "You are $age, and your favorite color is $color.";

 31

4.4PERL Variable Types

Perl has three built in variable types:

 Scalar ($)
 Array (@)
 Hash (%)

 scalar => {
 description => "single item",
 sigil => '$',
 },
 array => {
 description => "ordered list of items",
 sigil => '@',
 },
 hash => {
 description => "key/value pairs",
 sigil => '%',
 },

4.5 Scalar Variables:

A scaler variable is represented by doller sign ($).

A scalar represents a single value as follows:

 my $animal = "camel"; my $answer = 42;

Here my is a keyword.

A scalar values can be strings, integers or floating point numbers, and Perl will automatically
convert between them as required. There is no need to pre-declare your variable types. Scalar
values can be used in various ways:

$age = 25; integer
$name = “Anupam” String
$Salary = 1445.50 Floating

4.6 Array Variables:

An array is a variable that stors an ordered list of Scalar variables. It is represented through
“@” Symbol.

 32

@ages = (25,30,40);

@name = (“Ram”, “Hari”, “Madhu”);

print “ages[0] = $ages[0]”; print “ages[1] = $ages[1]”; print “ages[2] = $ages[2]”;

Output: ages[0]=25 ages[1]=30 ages[2]=40

4.6 Hash Variables:

Hash variables are represented through “%” symbol.

A hash is a set of key/value pairs. To refer a single element of a hash, you will use the hash
variable name followed by the “key” associated with the value in brackets.

%data = (‘John’,45,’Lisa’,30,’Kumar’,40);

Print “\data{‘John’}=$data{‘John’}\n”;

Print “\data{‘Lisa’}=$data{‘Lisa’}\n”;

Print “\data{‘Kumar’}=$data{‘Kumar’}\n”;

4.7 SOME BASIC PARL PROGRAM:

Assignment 1: Write a perl script to take input from the user
#such as name,Roll,Department,Stream and diplay it with proper syntax.

NOTE: (#) it is Comment statement.

 Perl statements end in a semi-colon(;)

 print"hello\n world";

 variable declearation

 $name=anupam;
 Variable print

 print"\n$name";

<STDIN> stands for standard input.
 It can be abbreviated by using simple <>.

 print "\nHow old are you?";
 $age = <>;
 print "WOW! You are $age years old!";

 33

#Assignment : WAP in perl to take input from user terminal and display it by using
chomp function.

print "How old are you?";
chomp ($age = <>);
print "What is your favorite color?";
chomp ($color = <>);
print "You are $age, and your favorite color is $color.";

Assignments

1.Write a perl script to take input from the use such as name,Roll,Department,Stream and
diplay it with proper syntax.It is Comment statement.
Perl statements end in a semi-colon(;)this would print with a linebreak in the middle

2.WAP in perl to take input from user terminal and display it by using chomp function.

3. Write a simple Perl script to take input name, college, stream as a input from the terminal and
display it.
4. Write a Perl script to search a word from a sentence.

a) Using String matching method.
b) Using Substitution method.

5. Write a Perl script to implement Celsius to Fahrenheit Converter
6. Write a Perl script to convert all lower case sentence to upper case.
7. Write a Perl script to convert all first letter of a sentence to upper case.

8. Write a Perl script to implement the regular expression as follows:
9.If a string starts with MCA and end with bw, print 1 else 0.
10.Implement the following with regular expression in Perl:

A) a* at least 2 b’s

B) a* exactly 3 b’s
C) a*bc

12.Write a perl script to implement associative array.

Socket Programming using Java

5. What is socket? Sockets provide the communication mechanism between two
computers using TCP. A client program creates a socket on its end of the
communication and attempts to connect that socket to a server.

 34

When the connection is made, the server creates a socket object on its end of the communication.
The client and server can now communicate by writing to and reading from the socket.

The java.net.Socket class represents a socket, and the java.net.ServerSocket class provides a
mechanism for the server program to listen for clients and establish connections with them.

The following steps occur when establishing a TCP connection between two computers using
sockets:

 The server instantiates a ServerSocket object, denoting which port number
communication is to occur on.

 The server invokes the accept() method of the ServerSocket class. This method waits
until a client connects to the server on the given port.

 After the server is waiting, a client instantiates a Socket object, specifying the server
name and port number to connect to.

 The constructor of the Socket class attempts to connect the client to the specified server
and port number. If communication is established, the client now has a Socket object
capable of communicating with the server.

 On the server side, the accept() method returns a reference to a new socket on the server
that is connected to the client's socket.

After the connections are established, communication can occur using I/O streams. Each socket
has both an OutputStream and an InputStream. The client's OutputStream is connected to the
server's InputStream, and the client's InputStream is connected to the server's OutputStream.

TCP is a twoway communication protocol, so data can be sent across both streams at the same
time. There are following usefull classes providing complete set of methods to implement
sockets.

5.1 ServerSocket Class Methods

The java.net.ServerSocket class is used by server applications to obtain a port and listen for
client requests

The ServerSocket class has four constructors:

SN Methods with Description

1

public ServerSocket(int port) throws IOException

Attempts to create a server socket bound to the specified port. An exception occurs if the port
is already bound by another application.

2

public ServerSocket(int port, int backlog) throws IOException

Similar to the previous constructor, the backlog parameter specifies how many incoming
clients to store in a wait queue.

 35

3

public ServerSocket(int port, int backlog, InetAddress address) throws IOException

Similar to the previous constructor, the InetAddress parameter specifies the local IP address
to bind to. The InetAddress is used for servers that may have multiple IP addresses, allowing
the server to specify which of its IP addresses to accept client requests on

4

public ServerSocket() throws IOException

Creates an unbound server socket. When using this constructor, use the bind() method when
you are ready to bind the server socket

If the ServerSocket constructor does not throw an exception, it means that your application has
successfully bound to the specified port and is ready for client requests.

Here are some of the common methods of the ServerSocket class:

SN

5.2 Methods with Description

1

public int getLocalPort()

Returns the port that the server socket is listening on. This method is useful if you passed in 0
as the port number in a constructor and let the server find a port for you.

2

public Socket accept() throws IOException

Waits for an incoming client. This method blocks until either a client connects to the server
on the specified port or the socket times out, assuming that the time-out value has been set
using the setSoTimeout() method. Otherwise, this method blocks indefinitely

3
public void setSoTimeout(int timeout)

Sets the time-out value for how long the server socket waits for a client during the accept().

4

public void bind(SocketAddress host, int backlog)

Binds the socket to the specified server and port in the SocketAddress object. Use this
method if you instantiated the ServerSocket using the no-argument constructor.

When the ServerSocket invokes accept(), the method does not return until a client connects.
After a client does connect, the ServerSocket creates a new Socket on an unspecified port and
returns a reference to this new Socket. A TCP connection now exists between the client and
server, and communication can begin.

 36

5.3 Socket Class Methods

The java.net.Socket class represents the socket that both the client and server use to
communicate with each other. The client obtains a Socket object by instantiating one, whereas
the server obtains a Socket object from the return value of the accept() method.

The Socket class has five constructors that a client uses to connect to a server:

SN

5.4 Methods with Description

1

public Socket(String host, int port) throws UnknownHostException, IOException.

This method attempts to connect to the specified server at the specified port. If this
constructor does not throw an exception, the connection is successful and the client is
connected to the server.

2

public Socket(InetAddress host, int port) throws IOException

This method is identical to the previous constructor, except that the host is denoted by an
InetAddress object.

3

public Socket(String host, int port, InetAddress localAddress, int localPort) throws
IOException.

Connects to the specified host and port, creating a socket on the local host at the specified
address and port.

4

public Socket(InetAddress host, int port, InetAddress localAddress, int localPort)
throws IOException.

This method is identical to the previous constructor, except that the host is denoted by an
InetAddress object instead of a String

5
public Socket()

Creates an unconnected socket. Use the connect() method to connect this socket to a server.

When the Socket constructor returns, it does not simply instantiate a Socket object but it actually
attempts to connect to the specified server and port.

Some methods of interest in the Socket class are listed here. Notice that both the client and server
have a Socket object, so these methods can be invoked by both the client and server.

SN
5.5 Methods with Description

1
public void connect(SocketAddress host, int timeout) throws IOException

This method connects the socket to the specified host. This method is needed only when you

 37

instantiated the Socket using the no-argument constructor.

2
public InetAddress getInetAddress()

This method returns the address of the other computer that this socket is connected to.

3
public int getPort()

Returns the port the socket is bound to on the remote machine.

4
public int getLocalPort()

Returns the port the socket is bound to on the local machine.

5
public SocketAddress getRemoteSocketAddress()

Returns the address of the remote socket.

6

public InputStream getInputStream() throws IOException

Returns the input stream of the socket. The input stream is connected to the output stream of
the remote socket.

7

public OutputStream getOutputStream() throws IOException

Returns the output stream of the socket. The output stream is connected to the input stream of
the remote socket

8

public void close() throws IOException

Closes the socket, which makes this Socket object no longer capable of connecting again to
any server

InetAddress Class Methods:

This class represents an Internet Protocol (IP) address. Here are following usefull methods which
you would need while doing socket programming:

SN 5.6 Methods with Description

1
static InetAddress getByAddress(byte[] addr)

Returns an InetAddress object given the raw IP address .

2
static InetAddress getByAddress(String host, byte[] addr)

Create an InetAddress based on the provided host name and IP address.

3
static InetAddress getByName(String host)

Determines the IP address of a host, given the host's name.

4
String getHostAddress()

Returns the IP address string in textual presentation.

 38

5
String getHostName()

Gets the host name for this IP address.

6
static InetAddress InetAddress getLocalHost()

Returns the local host.

7
String toString()

Converts this IP address to a String.
5.7 Socket Client Example

The following GreetingClient is a client program that connects to a server by using a socket and
sends a greeting, and then waits for a response.

// File Name GreetingClient.java

import java.net.*;
import java.io.*;

public class GreetingClient
{
 public static void main(String [] args)
 {
 String serverName = args[0];
 int port = Integer.parseInt(args[1]);
 try
 {
 System.out.println("Connecting to " + serverName +
 " on port " + port);
 Socket client = new Socket(serverName, port);
 System.out.println("Just connected to "
 + client.getRemoteSocketAddress());
 OutputStream outToServer = client.getOutputStream();
 DataOutputStream out = new DataOutputStream(outToServer);
 out.writeUTF("Hello from "
 + client.getLocalSocketAddress());
 InputStream inFromServer = client.getInputStream();
 DataInputStream in =
 new DataInputStream(inFromServer);
 System.out.println("Server says " + in.readUTF());
 client.close();
 }catch(IOException e)
 {
 e.printStackTrace();
 }
 }
}
Socket Server Example:

The following GreetingServer program is an example of a server application that uses the Socket
class to listen for clients on a port number specified by a command-line argument:

 39

// File Name GreetingServer.java

import java.net.*;
import java.io.*;

public class GreetingServer extends Thread
{
 private ServerSocket serverSocket;

 public GreetingServer(int port) throws IOException
 {
 serverSocket = new ServerSocket(port);
 serverSocket.setSoTimeout(10000);
 }

 public void run()
 {
 while(true)
 {
 try
 {
 System.out.println("Waiting for client on port " +
 serverSocket.getLocalPort() + "...");
 Socket server = serverSocket.accept();
 System.out.println("Just connected to "
 + server.getRemoteSocketAddress());
 DataInputStream in =
 new DataInputStream(server.getInputStream());
 System.out.println(in.readUTF());
 DataOutputStream out =
 new DataOutputStream(server.getOutputStream());
 out.writeUTF("Thank you for connecting to "
 + server.getLocalSocketAddress() + "\nGoodbye!");
 server.close();
 }catch(SocketTimeoutException s)
 {
 System.out.println("Socket timed out!");
 break;
 }catch(IOException e)
 {
 e.printStackTrace();
 break;
 }
 }
 }
 public static void main(String [] args)
 {
 int port = Integer.parseInt(args[0]);
 try
 {
 Thread t = new GreetingServer(port);
 t.start();
 }catch(IOException e)
 {
 e.printStackTrace();
 }
 }

 40

}

Compile client and server and then start server as follows:

$ java GreetingServer 6066
Waiting for client on port 6066...

Check client program as follows:

$ java GreetingClient localhost 6066
Connecting to localhost on port 6066
Just connected to localhost/127.0.0.1:6066
Server says Thank you for connecting to /127.0.0.1:6066
Goodbye!

Assignments on Socket progrmas
1.Write a socket program in java to create Echo client and Echo server.
2. Write a socket program in java to display the system date and time .
3. Write a socket program in java to convert lowercase letter to uppercase.
4. Write a socket program in java to create chat client and chat server.

RMI
6 Objectives to Learn RMI
• Capitalizes on “Java Object Model”
• Distributed application protocols in term of interfaces, classes, and method invocations
• Insulated from low level details of network communications (sockets, byte layout, etc.)
• Minimizes Complexity

• Preserves safety of the Preserves safety of the Java runtime environment
6.1 Overview of RMI

There are three processes that participate in supporting remote method invocation.

1. The Client is the process that is invoking a method on a remote object.
2. The Server is the process that owns the remote object. The remote object is an ordinary

object in the address space of the server process.
3. The Object Registry is a name server that relates objects with names. Objects are

registered with the Object Registry. Once an object has been registered, one can use the
Object Registry to obtain access to a remote object using the name of the object.

There are two kinds of classes that can be used in Java RMI.

1. A Remote class is one whose instances can be used remotely. An object of such a class
can be referenced in two different ways:

 41

1. Within the address space where the object was constructed, the object is an
ordinary object which can be used like any other object.

2. Within other address spaces, the object can be referenced using an object handle.
While there are limitations on how one can use an object handle compared to an
object, for the most part one can use object handles in the same way as an
ordinary object.

For simplicity, an instance of a Remote class will be called a remote object.

2. A Serializable class is one whose instances can be copied from one address space to
another. An instance of a Serializable class will be called a serializable object. In other
words, a serializable object is one that can be marshaled. Note that this concept has no
connection to the concept of serializability in database management systems.

If a serializable object is passed as a parameter (or return value) of a remote method invocation,
then the value of the object will be copied from one address space to the other. By contrast if a
remote object is passed as a parameter (or return value), then the object handle will be copied
from one address space to the other.

One might naturally wonder what would happen if a class were both Remote and Serializable.
While this might be possible in theory, it is a poor design to mix these two notions as it makes
the design difficult to understand.
6.2 Serializable Classes

We now consider how to design Remote and Serializable classes. The easier of the two is a Serializable
class. A class is Serializable if it implements the java.io.Serializable interface. Subclasses of a
Serializable class are also Serializable. Many of the standard classes are Serializable, so a subclass of one
of these is automatically also Serializable. Normally, any data within a Serializable class should also be
Serializable. Although there are ways to include non-serializable objects within a serializable objects, it is
awkward to do so. See the documentation of java.io.Serializable for more information about
this.

Using a serializable object in a remote method invocation is straightforward. One simply passes the object
using a parameter or as the return value. The type of the parameter or return value is the Serializable
class. Note that both the Client and Server programs must have access to the definition of any Serializable
class that is being used. If the Client and Server programs are on different machines, then class definitions
of Serializable classes may have to be downloaded from one machine to the other. Such a download could
violate system security.

The only Serializable class that will be used in the "Hello, world!" example is the String class, so no
problems with security arise.

6.3 Remote Classes and Interfaces

Next consider how to define a Remote class. This is more difficult than defining a Serializable class. A
Remote class has two parts: the interface and the class itself. The Remote interface must have the
following properties:

 42

1. The interface must be public.
2. The interface must extend the interface java.rmi.Remote.
3. Every method in the interface must declare that it throws java.rmi.RemoteException.

Other exceptions may also be thrown.

The Remote class itself has the following properties:

1. It must implement a Remote interface.
2. It should extend the java.rmi.server.UnicastRemoteObject class. Objects of such a

class exist in the address space of the server and can be invoked remotely. While there
are other ways to define a Remote class, this is the simplest way to ensure that objects of
a class can be used as remote objects. See the documentation of the java.rmi.server
package for more information.

3. It can have methods that are not in its Remote interface. These can only be invoked
locally.

Unlike the case of a Serializable class, it is not necessary for both the Client and the Server to
have access to the definition of the Remote class. The Server requires the definition of both the
Remote class and the Remote interface, but the Client only uses the Remote interface. Roughly
speaking, the Remote interface represents the type of an object handle, while the Remote class
represents the type of an object. If a remote object is being used remotely, its type must be
declared to be the type of the Remote interface, not the type of the Remote class.

In the example program, we need a Remote class and its corresponding Remote interface. We call these
Hello and HelloInterface, respectively. Here is the file HelloInterface.java:

import java.rmi.*;
/**
 * Remote Interface for the "Hello, world!" example.
 */
public interface HelloInterface extends Remote {
 /**
 * Remotely invocable method.
 * @return the message of the remote object, such as "Hello, world!".
 * @exception RemoteException if the remote invocation fails.
 */
 public String say() throws RemoteException;
}
Here is the file Hello.java:
import java.rmi.*;
import java.rmi.server.*;
/**
 * Remote Class for the "Hello, world!" example.
 */
public class Hello extends UnicastRemoteObject implements HelloInterface {
 private String message;
 /**
 * Construct a remote object

 43

 * @param msg the message of the remote object, such as "Hello, world!".
 * @exception RemoteException if the object handle cannot be constructed.
 */
 public Hello (String msg) throws RemoteException {
 message = msg;
 }
 /**
 * Implementation of the remotely invocable method.
 * @return the message of the remote object, such as "Hello, world!".
 * @exception RemoteException if the remote invocation fails.
 */
 public String say() throws RemoteException {
 return message;
 }
}

All of the Remote interfaces and classes should be compiled using javac. Once this has been completed,
the stubs and skeletons for the Remote interfaces should be compiled by using the rmic stub compiler.
The stub and skeleton of the example Remote interface are compiled with the command:

 rmic Hello

The only problem one might encounter with this command is that rmic might not be able to find the files
Hello.class and HelloInterface.class even though they are in the same directory where
rmic is being executed. If this happens to you, then try setting the CLASSPATH environment variable to
the current directory, as in the following command:

 setenv CLASSPATH .
If your CLASSPATH variable already has some directories in it, then you might want to add the
current directory to the others.

6.3.1 Example code of RMI Interface
import java.rmi.*;
import java.rmi.server.*;
public interface Rmi_Interface extends Remote
{
 public double add(double a,double b)throws RemoteException;
 public double sub(double a,double b)throws RemoteException;
 public double mul(double a,double b)throws RemoteException;
 public double div(double a,double b)throws RemoteException;
}

6.4 Steps to run RMI application
Steps
Java Files Are:-
Rmi_Interface.java
Rmi_Client.java
Rmi_Server.java

 44

1. Compile all files (javac Rmi_Interface.java, javac Rmi_Client.java, javac
Rmi_Server.java)
2. rmic Rmi_Server (RMI Compilation of Rmi_Server.class file)
 (it will create Rmi_Server_Skel.class and Rmi_Server_Stub.class)
3. Copy Rmi_Client.class, Rmi_interface.class and Rmi_Server_Stub.class file to another
machine
 (that machine will play as a Client machine. Present machine will the Server machine)
4. In the server Machine (present machine) run c:\jdk1.3\bin>rmiregistry
 (default port will be 1099 or c:\jdk1.3\bin>rmiregistry 2210 then port will be 2210)
5. In the Server Machine run c:\jdk1.3\bin>java Rmi_Server
 (Server is ready)

6. In the Client machine run c:\jdk1.3\bin>java Rmi_Client 20 5
 (20 and 5 is the command line argument as per Prog.)

Summary Table:-

 Server Machine Client Machine

 Rmi_Interface.class Rmi_Interface.class
 Rmi_Server.class Rmi_Client.class
 Rmi_Server_Skel.class Rmi_Server_Stub.class
 Rmi_Server_Stub.class
 c:\jdk1.3\bin>rmiregistry c:\jdk1.3\bin>java Rmi_Client 20 5
 c:\jdk1.3\bin>java Rmi_Server
6.5 Programming a Client

Having described how to define Remote and Serializable classes, we now discuss how to program the
Client and Server. The Client itself is just a Java program. It need not be part of a Remote or Serializable
class, although it will use Remote and Serializable classes.

A remote method invocation can return a remote object as its return value, but one must have a remote
object in order to perform a remote method invocation. So to obtain a remote object one must already
have one. Accordingly, there must be a separate mechanism for obtaining the first remote object. The
Object Registry fulfills this requirement. It allows one to obtain a remote object using only the name of
the remote object.

The name of a remote object includes the following information:

1. The Internet name (or address) of the machine that is running the Object Registry with
which the remote object is being registered. If the Object Registry is running on the same
machine as the one that is making the request, then the name of the machine can be
omitted.

2. The port to which the Object Registry is listening. If the Object Registry is listening to
the default port, 1099, then this does not have to be included in the name.

3. The local name of the remote object within the Object Registry.

 45

Here is the example Client program:
 /**
 * Client program for the "Hello, world!" example.
 * @param argv The command line arguments which are ignored.
 */
 public static void main (String[] argv) {
 try {
 HelloInterface hello =
 (HelloInterface) Naming.lookup ("//ortles.ccs.neu.edu/Hello");
 System.out.println (hello.say());
 } catch (Exception e) {
 System.out.println ("HelloClient exception: " + e);
 }
 }

The Naming.lookup method obtains an object handle from the Object Registry running on
ortles.ccs.neu.edu and listening to the default port. Note that the result of Naming.lookup
must be cast to the type of the Remote interface.

The remote method invocation in the example Client is hello.say(). It returns a String which is then
printed. A remote method invocation can return a String object because String is a Serializable class.

The code for the Client can be placed in any convenient class. In the example Client, it was placed in a
class HelloClient that contains only the program above.

Assignments on RMI

1.Write a program to design a simple calculator using RMI.

XML

7. XML stands for Extensible Markup Language. It is a general purpose specification to
create custom markup language for sharing structure data via Internet, encode documents
and to serialize data. HTML was design to format and display data, whereas XML is to store
and transport data. The content and structure of XML documents are accessed by a
software module, called XML processor.
Similar to HTML documents, data are marked by tags in XML. These tags are not predefined
rather user defined. XML design is self descriptive and follows W3C recommendation. Since
more such tags may be defined in XML, it is said to be extensible.
An XML has two correctness levels.

1. Well-formed. A well-formed document conforms to the XML syntax rules; i.e. a start-tag (<
>) must corresponds with an end-tag (</>).

2. Valid. A valid document additionally conforms to semantic rules, either user-defined or an
XML schema, especially DTD.

 46

XML documents must contain a root element. This element is ‘Parent’ of all other elements.
The elements in an XML document form a document tree. The tree starts at the root and
branches to the lowest level of the tree.

Root Element
<BookStore>

Element:
<Book>

Element:
<Title>

Element:
<Author>

Element:
<Binding>

Element:
<Pages>

Element:
<Price>

P
ar

en
t C

hild

Siblings

Text:
<Moby Dick>

Text:
<H. Melville>

Text:
<Hardcover>

Text:
<724>

Text:
<$9.75>

Fig. 1 XML Tree

 Figure 1 depicts a XML Tree. BookStore is the root element. All <Book> elements in the
document are contained within <BookStore>. The <Book> element has 5 children Title,
Author, Binding, Pages and Price; they are siblings to each other.
Elements <BookStore> and <Book> have element contents and Elements <Title>, <Author>
etc. has text element.
Elements may have an attribute (not shown in the figure) for e.g. <Book> can have an
attribute (category=”Children”).
Let us create the XML file described above with five books.
Experiment 1: Creating BookStore.xml file.
Step 1 Open Notepad or any or any other suitable application and type the following
code. (I have used Crimson Editor and Macromedia Dreamweaver.)

 47

Points to be noted regarding Well-formed XML:
 Am XML Document must have one and exactly one root element.
 All tags must be closed.
 All tags must be properly nested.
 XML tags are case-sensitive.
 Attributes must always be quoted.
 Reserve word cannot be used in XML documents

Step 2 Save the file as BookStore.xml

Step 3 Open this file using any web browser.

The file in browser will look like Fig. 2.

 48

Fig. 2 XML file opened with a browser.

 49

Experiment 2: Crating CSS file to display .XML file in formatted output.
Step 1 Type the following code and save it as BookSotre.css. (Fig. 3)

Fig. 3 Code for BookStore.css

 Step 2 Open BookStore.xml file (you have already created in Experiment 1) and add the
following code in Line 2 (Fig. 4): <?xml-stylesheet type=”text/css” href=”BookStore.css”?>

Fig. 4 BookStore.xml file; now referencing BookStore.css to display in a formatted way.

Step 2 Now open BookStore.xml file using any web browser. The output will look like
the following figure (Fig. 5).

Fig. 5 BookStore.xml is now displayed in a formatted manner

Question: Can you say why each Book is displayed in different paragraph?

 50

Experiment 3: Using different format.
Step 1 Open BookStore.css and the following tags in line 10, 11, 12, 18, 22-31 (Fig. 6a).
Here each element will be displayed in block except the Element Pages; as it is set as none.
Step 2 Save BookStore.css.
Step 3 Now, open BookStore.xml file and see the effect (Fig. 6b).

Fig. 6 a) CSS code b) XML formatted output

 51

Experiment 4.1 Viewing XML file using Extended Style Sheet (XSL)
Step 1 Create the following XSL file and save it as display.xsl

Step 2 Open the BookStore.xml and modify line 3 to link display.xsl. Save the file as
BookStore1.xml (just to make a separate file).

Step 3 Open BookStore1.xml using any web browser. Output will be as follows.
(Note that only one element has been displayed, not all).

 52

Experiment 4.2 Displaying all records from XML file using Extended Style Sheet
(XSL)
Step 1 Open display.xsl and modify codes as given below and save it as DisplayAll.xsl.
Note the modifications on lines 6, 29 and 9,13,17,21,25

Step 2 Open the BookStore1.xml and modify line 3 to link DisplayAll.xsl as:

<?xml-stylesheet type="text/xsl" href="DisplayAll.xsl"?>
Step 3 Open BookStore1.xml using any web
browser. Output will be as follows. Here all the
elements available in BookStore1.xml have been
displayed.

Experiment 4.3 Displaying all records from XML
along with Filtering and Sorting.
Step 1 Open DisplayAll.xsl and modify line 6 as
<xsl:for-each select
="BookStore/Book[Binding='Paperback']"
order-by="+Author">

 53

Step 2 Open BookStore1.xml using any web browser. All the books with Paperback
binding will be displayed in ascending order of Author.

Experiment 4.4 Displaying all records in a table using XSL file.
Step 1 Open DisplayAll.xsl and modify code as follows. Save file as DispalyTable.xsl.

Step 2 Open the BookStore1.xml and modify line 3 to link DisplayTable.xsl as:

<?xml-stylesheet type="text/xsl" href="DisplayTable.xsl"?>
Step 2 Open BookStore1 using any web browser. Output will be as follows:-

XML Data Binding

Experiment 5.1 Displaying single Record.
Step 1 Create this HTML file for embedding the data in BookStore.xml. Save the file as
DataBind.xml

 54

Step 2 Open the file DataBind.xml. The output will be as follows:-

Experiment 5.1 Navigation between records using buttons.
Step 1 Open DataBind.html and modify it as follows.

Step 2 Open the file DataBind.xml. You can navigate records using buttons

Assignments on XML
1. Write a XML program that will create an XML document which contains your mailing
address.

 55

2. Write a XML program that will create an XML document which contains description of
three book category.

3. Create an XML document that contains the name and price per pound of coffee beans.
 i) In your XML document mention all properties of XML declaration.
 ii) The root element has name <coffee_bean>
 iii) Create nested elements for different types of coffee.
 iv) Validate the document and if any parsing error is present, fix them.

4. Create an XML document that contains airline flight information.
 i) In your XML document mention all properties of XML declaration.
 ii) The root element has name <airlines>
iii) Create three nested <carrier> elements for three separate airlines. Each element should
include a name attribute.
iv) Within each <carrier> nest at least two <flight> ,each of which contains departure_city,
destination_ city, fl_no, dept_time.
 v) Validate the document and if any parsing error is present fix them.

5. Create an XML version of your resume. Include elements such as your name and position
desired. Nest each of your former employers within an <employer> element. Also, nest your
educational experience within an <education> element. Create any other nested elements
that you deem appropriate, such as <references> or <spcl_skills> elements.

6. Create a DTD on product catalog.

Applet Programming

8.1 How to create a basic Applet?

Solution:

Following example demonstrates how to create a basic Applet by extending Applet Class. You
will need to embed another HTML code to run this program.

import java.applet.*;
import java.awt.*;

public class Main extends Applet{
 public void paint(Graphics g){
 g.drawString("Welcome in Java Applet.",40,20);
 }
}

Now compile the above code and call the generated class in your HTML code as follows:

<HTML>

 56

<HEAD>
</HEAD>
<BODY>
<div >
<APPLET CODE="Main.class" WIDTH="800" HEIGHT="500">
</APPLET>
</div>
</BODY>
</HTML>

Result: Welcome in Java Applet.

8.2 How to create a banner using Applet?

Solution:

Following example demonstrates how to play a sound using an applet image using Thread class.
It also uses drawRect(), fillRect(), drawString() methods of Graphics class.

import java.awt.*;
import java.applet.*;

public class SampleBanner extends Applet
implements Runnable{
 String str = "This is a simple Banner ";
 Thread t ;
 boolean b;
 public void init() {
 setBackground(Color.gray);
 setForeground(Color.yellow);
 }
 public void start() {
 t = new Thread(this);
 b = false;
 t.start();
 }
 public void run () {
 char ch;
 for(; ;) {
 try {
 repaint();
 Thread.sleep(250);
 ch = str.charAt(0);
 str = str.substring(1, str.length());
 str = str + ch;
 }
 catch(InterruptedException e) {}
 }
 }
 public void paint(Graphics g) {
 g.drawRect(1,1,300,150);
 g.setColor(Color.yellow);
 g.fillRect(1,1,300,150);
 g.setColor(Color.red);

 57

 g.drawString(str, 1, 150);
 }
}

8.3 How to go to a link using Applet?
Solution:

Following example demonstrates how to go to a particular webpage from an applet using
showDocument() method of AppletContext class.

import java.applet.*;
import java.awt.*;
import java.net.*;
import java.awt.event.*;

public class tesURL extends Applet implements ActionListener{
 public void init(){
 String link = "yahoo";
 Button b = new Button(link);
 b.addActionListener(this);
 add(b);
 }
 public void actionPerformed(ActionEvent ae){
 Button src = (Button)ae.getSource();
 String link = "http://www."+src.getLabel()+".com";
 try{
 AppletContext a = getAppletContext();
 URL u = new URL(link);
 a.showDocument(u,"_self");
 }
 catch (MalformedURLException e){
 System.out.println(e.getMessage());
 }
 }
}

Assignments

 Display clock using Applet
 Create different shapes using Applet
 Goto a link using Applet
 Display image using Applet
 Open a link in a new window using Applet
 Play sound using Applet

 58

References:

1. Perl Programming, Larry Wall and Randal L. Schwartz, Oreilly
2. JavaScript: The Definitive Guide, David Flanagan, Oreilly
3. Java Programming, Herbert Schildt, PHI
4. HTML & CSS: Design and Build Web Sites, Jon Duckett

